

Technical Report

Replicode: A cons tructivist
programming paradigm

and language

Version 2 .0
Revision 4

Eric Nivel & Kristinn R. Th ó risson

with contributions from

Nathaniel Thurston , Yngvi Bjornsson

RUTR -SCS13001
2013

Reykjavik University

School of Computer S cience

Content

Replicode - Language Specification V2.0

2/104

1 Introduction 4

2 Overview 5

3 Pattern Matching 10
3.1 Objects 10
3.2 Patterns 12

4 Execution Model 14
4.1 Program Structure 14
4.2 Program Execution 15

5 Groups 21
5.1 Individual Scale 21
5.2 Collective Scale 21

6 High -Level Reasoning 28
6.1 Predicates 28
6.2 Composite States 29
6.3 Models 30
6.4 Pattern Extraction 34
6.5 Simulation 36
6.6 Drives 39

7 Self -Monitoring of Time Resources 40

8 Distributed Computation 41

9 References 42

Annex 1 Replicode Specification
1 Overview 43

2 Syntax 43
2.1 Atoms 43
2.2 Separators 45
2.3 Sets 45
2.4 Expressions 45
2.5 Code Formatting 45
2 .6 Pre -processor Directives 48
2.7 Code Structure 52

3 Built -in Constructs 52
3.1 Operators 52
3.2 Object Classes 52
3.3 Devices and Device Functions 53
3.4 Marker Classes 54
3.5 Entities 54
3.6 Groups 54

4 Semantics 54
4.1 Operators 54
4.2 Object Classes 59
4.2.1 Structure 59
4.2.2 Built -in Classes 61
4.3 Marker Classes 71
4.4 Entities 74
4.5 Groups 74
4.6 Devices 74

5 Standard Definitions 75

Replicode - Language Specification V2.0

3/104

Annex 2 Specification of the Executive
1 Overview 78

2 rCore 78

3 rMem 80
3.1 Role 80
3.2 Functions 80
3.3 Notifications 82
3.4 Interface 83

Annex 3 R-Code Specification
1 Overview 85

2 R-code 86
2.1 R-atoms 86
2.2 Encoding of Expressions 90
2.3 Examples 92

3 Compiler 94
3.1 Images 94
3.2 compile 97
3.3 decompile 97

4 Communication With External
Modules 98

5 Dependencies 99

Annex4 Replicode Extension API
1 Overview 100

2 Specification 100

3 Other Extensions 104
3.1 Object and Marker Classes 104
3.2 Devices 104
3.3 Device Functions 104

Replicode - Language Specification V2.0

4/104

1 Introduction
Replicode is a language designed to encode short parallel programs and executable models,
and is centered on the notions of extensive pattern-matching

1
 and dynamic code production.

The language is domain independent and has been designed to build systems that are model-
based and model-driven, as production systems that can modify their own code. More over,

Replicode supports the distribution of knowledge and computation across clusters of computing
nodes.

This document describes Replicode and its executive, i.e. the system that executes Replicode
constructions. The Replicode executive is meant to run on Linux 64 bits and Windows 7 32/64
bits platforms and interoperate with custom C++ code.

The motivations for the Replicode language, the constructivist paradigm it rests on, and the
higher-level AI goals targeted by its construction, are described by Thórisson (2012), Nivel and
Thórisson (2009), and Thórisson and Nivel (2009a, 2009b).

An overview presents the main concepts of the language. Section 3 describes the general
structure of Replicode objects and describes pattern matching. Section 4 describes the
execution model of Replicode and section 5 describes how computation and knowledge are
structured and controlled. Section 6 describes the high-level reasoning facilities offered by the
system. Finally, section 7 describes how the computation is distributed over a cluster of
computing nodes.

Consult Annex 1 for a formal definition of Replicode, Annex 2 for a specification of the
executive, Annex 3 for the specification of the executable code format (r-code) and its C++ API,
and Annex 4 for the definition of the Replicode Extension C++ API.

The authors are grateful to Manuel Rodriguez, Carlos Hernandez Corbato, Ricardo Sanz and Bas
Steunebrink for their constructive comments.

1
 Patterns target arbitrarily complex time series of objects. Patterns can be matched by any code in a given

system, and at any depth in the objectsô structure.

Replicode - Language Specification V2.0

5/104

2 Overview
Replicode is a programming language to specify knowledge and algorithms to implement
reasoning about knowledge and algorithms. Replicode is a language that comes in a human-
readable form. The latter has to be compiled into a machine-readable form ï r-code - that will
be interpreted at runtime and reciprocally, be decompiled into the human-readable form. An r-
code interpreter, called rCore, is a tiny virtual machine capable of executing r-code programs.
rCores are part of the executive (the other essential part is the memory, rMem).

Systems coded with Replicode are distributed production systems, where knowledge is
scattered across a cluster of computing nodes, and where programs react automatically to the
occurrence of knowledge using pattern-matching to produce new knowledge. Such systems are
data-driven, and are composed of a possibly (very) large number of concurrent programs
interacting in a global workspace.

Figure 1 ï Overview of a Replicode Application

Top: an application is composed of knowledge encoded in Replicode and of
external modules (custom C++ code, in black) called devices. An application is
executed by several computing nodes (white rectangles, dashed outlines)
interconnected by a messaging infrastructure (bidirectional arrow). Some of these
nodes host an instance of the executive (grey rounded rectangles). Such
instances communicate with devices and with each other, exchanging knowledge
encoded in Replicode.

N.B.: the messaging infrastructure is not part of the Replicode specification.

Bottom: overview of the content of an instance of the executive. It contains many
parallel programs (in black) that react on data (in white) in a local workspace (in
grey). Programs and data are exchanged between all constituents of the system
(devices and instances of the executive); these multiples instances form
altogether a distributed global workspace.

Replicode allows introspection, i.e. the evaluation of knowledge by other programs, including
the code of any programs. This meets the fundamental requirement of reflectivity, needed by
architectures that need to build models of themselves. In this respect, the executive also
notifies programs - at runtime ï of essential events that reflect the execution of code (for
example, productions, invocation of commands issued to I/O devices, process spawning and
termination, etc).

Said architectures are said model-based in that sense that actions (productions) can result from

evaluating executable models (forward models to predict, inverse models to reach goals). The
selection of the models to be evaluated is not hard-coded, but is instead controlled by the
execution of other models: in addition to be based on models, the architectures in question are
also model-driven.

Replicode is a functional language designed to allow both forward chaining and backward
chaining, i.e. deductions and abductions. Put in another way, these two ways of exploiting
knowledge are akin to, respectively, production and search.

Replicode - Language Specification V2.0

6/104

Replicode code is structured around the central notion of pattern-matching on knowledge, and
enforces a data-driven execution model. Knowledge is represented as objects ï i.e. instances
of classes

2
, some of which are user-defined, the others being part of the language axioms. The

latter are the following:

Program Programs react to incoming objects. A program defines a pattern of

time-constrained object sequences, including patterns and guards (conditions)
on the individual incoming objects and produces new objects built from the
incoming ones, said new objects being called productions. Programs are
reactive, i.e. they perform as described whenever incoming objects match the
time-pattern and guards. The transformation of inputs into productions is called
reduction.

Programs are state-less and have no side-effects.

Marker Markers are tags indicating that a given object is in a specific relation

with some other objects. A marker identifies the class of the relationship (like in
ñthis_cup has_color blueò where ñhas_colorò would be the class defined by the
marker). Thereafter the class of the relationship defined by a marker is simply
called ñmarker classò.

Entity An entity identifies an entity in the world or in the system. An entity is a

mere symbol used to specify to whom some knowledge applies, be it an event, a
prediction, a model, etc. An entity does not carry any semantics at all: semantics
are encoded in other objects that refer to entities (like markers, or models for
example).

Ontology An object of this class denotes an axiom of the domain. It is a mere

symbol used generally in markers to encode the fact that an entity has certain
properties belonging to the class of the ontology. For example, as an alternative
to the marker ñhas_colorò, we could define a more general marker class (mk.val
an_object a_property a_value) where an_object is an entity, a_property is a
member of the ontology of the domain, and a_value is the value associated to
the property for the object; in our example we would code: (mk.val an_object
color ñblueò).

Notifications The executive reflects the computational events by means of

objects that describe reductions that have occurred in the system. Intuitively, this
allows the system being aware of ñwhat is going onò. Notifications indicate, for
example, that a program performed the reduction of some input objects,
producing new objects at a certain time.

Device Devices are numerical identifiers for external software modules, i.e.

components not written in Replicode, running independently of the Replicode
executive in a given system, but interacting with code written in Replicode. Such
devices are typically I/O devices (think device drivers), and generally implement
functions that do not need to be modified at runtime.

Device Function Device functions are identifiers defined by devices that

represent the commands they expose to Replicode. Device functions are used to
encode commands to the devices, whereas these devices typically use markers
to notify the system of their activity.

Command Commands are the specification of a device, a device function and

some arguments. They are executed by the devices.

Group The global workspace is organized as graphs of sub-workspaces called

groups. Groups are objects that contain views on other objects. What
distinguishes between objects and views is essentially that objects contain code
(e.g. algorithms or data) whereas views contain data that qualify the code. Code
is qualified by control values such as activation (controls whether or not a
program can run) and saliency (controls whether or not code can be an input for
a program). Groups essentially restrict the scope of the reductions that can be
performed by its members: in short, the programs in a given group can only react

2
 Objects are like C structures (not like C++ objects). Replicode manipulates objects but is not ñobject-
orientedò.

Replicode - Language Specification V2.0

7/104

to input objects from that same group (see section 6 for more details) ï however,
this restriction of scope is fully controllable at runtime.

A given object can be projected onto (i.e. made a member of) many groups, and
groups ï being first-class citizens ï can also be projected onto other groups.

Fact The Fact class is provided to support high-level first order logic

programming. Essentially, a fact is a predicate pointing to other objects and
carries additional qualifications: (a) a time interval specifying when the fact holds
and, (b) a confidence value ï a number in [0,1] that encodes an estimate of the
certainty that the fact holds (notice that the confidence value is not a probability).

Another similar class is provided, |Fact, for specifying the absence of facts.

Goal A goal object is the building block for defining a target state in a system.

Goals are pointers to facts. Constraints are encoded as goal objects.

Prediction A prediction object is also a pointer to a fact and indicate that said

fact has not happened yet but will happen in the future.

Composite State A composite state is a set of patterns specifying facts that shall

occur at the same time. Composite states define guards (i.e. conditions) for
controlling both the forward chaining and the backward chaining.

Model A model is a structure composed of two patterns: the first pattern

specifies a fact that, when matched, triggers the production of a prediction,
templated after the second pattern (forward chaining). Models can also be
executed the other way around (backward chaining): when the second pattern is
matched by a goal, the executive produces a sub-goal templated after the first
pattern. Models also define guards for controlling both the forward chaining and
the backward chaining.

In addition to object classes, Replicode defines structures - sets and expressions -, to be built
from other structures, and eventually from atoms (see Annex 1 for the complete list):

t his Self-reference within executable code (as in C++).

Variables Identify and reference any code fragment.

Wildcards Used to ignore code fragments in patterns.

Numbers Floating point numbers.

Timestamps Integers with time semantics (in microseconds).

Identifiers Integers identifying instances of specific classes (devices, device

functions and computing nodes).

Boolean values.

nil Nothing.

|[] Empty set.

|nb Undefined number.

|inb Undefined imprecise number.

|u s Undefined time.

|ius Undefined imprecise time.

|did Undefined device identifier.

|fid Undefined device function identifier.

|bl Undefined Boolean value.

Replicode defines operators on structures and atoms: these are the usual arithmetic and logic
operators.

Replicode allows developers extending the set of operators: this is achieved using an API, the
Replicode Extension API.

Replicode also defines a preprocessor (in C++ style) for managing code definitions: this allows
developers defining custom object classes and macros.

Last, Replicode defines a set of functions to control the executive. Examples of such functions
are: inj (inject new objects), eje (eject existing objects to remote computing nodes) ins

(instantiate a program).

Replicode - Language Specification V2.0

8/104

Before getting any further, here is a summary of the principal characteristics of Replicode with
regards to information processing and information encoding:

Programs The code of programs has distinctive features, essentially:

Á There are no explicit loops: the execution is purely reactive (i.e. data-driven) and
there is no way to loop around objects in the memory. However, at a finer grain,
Replicode allows performing reductions on sets within a given object.

Á There is no ñandò operator: conjunctions are achieved by assembling patterns
and guards in sets, each of them bearing particular semantics (e.g. input
section, timing constraints, etc.).

Á There is no ñorò operator: disjunctions are achieved by running different
programs/models targeting the different cases that would have constituted the
operands of the desired disjunction.

Á Programs react to salient knowledge only: present knowledge that would not be
deemed salient enough still exists but will not be processed until it becomes
salient. The saliency of knowledge results from a collective agreement reached
by some other programs.

Á Programs are prevented from executing whenever their activation is deemed too
low. As for saliency, activation results from a collective agreement.

Á Programs have no application-dependent internal states.

Á Programs all run in parallel. Sequentiality and synchronization are implicit, as
they result from objects having been produced by some programs to become
the inputs of some others.

Á Programs are also knowledge and can be reasoned about: their code is explicit,
i.e. can match patterns defined by other programs.

Á Programs can be produced dynamically and executed on the fly.

Á Programs are small, ephemeral and numerous. Small, because understanding
small code is easier than understanding large complicated code. Numerous,
because small programs cannot achieve what an omniscient omnipotent
Behemoth could (if such a thing ever existed), and weôll need to compensate the
individual specialization and limited scope by the number. Ephemeral, because
programs exist for a reason that may no longer hold later.

Data Knowledge coded in Replicode has the following characteristics:

Á Replicode represents knowledge as non-axiomatic logic expressions. ñTruthò is
always to be subjected to interpretation by programs and models and shall be
revised. In other words, knowledge can be incomplete, context-dependent, and
does not reflect any absolute truth but reflects instead what the system has
learned so far from its experience.

Á Data are ephemeral, i.e. data have a limited lifetime, which can be controlled by
programs. Without intervention of the latter, data are deleted from memory when
their time to live expires. This time to live is called resilience and constitute one
of the three main values used to control objects ï the two others being saliency
and activation.

Á Once produced, data cannot be modified
3
. The memory holds the succession of

occurrences of objects, and it is up to the application to unify these into more
permanent constructions, i.e. more general facts that hold for longer periods of
time.

Á Saliency is contextual. In contrast with anecdotal information or noise, salient
data acquire their relevance to programs by collective agreement. Data are said
salient if they contribute noticeably to the achievement (or failure) of some
function implemented by a collective of programs.

Á The scope of data is controllable, i.e. data can be accessed (if they match the
right patterns) by all the programs in a given (sub-)workspace. Scope restriction
is however necessary to avoid the flooding of the system by possibly irrelevant

3
 Exception: the control values can be modified. However, they are not considered data for the present

discussion as they do not convey information about the application domain.

Replicode - Language Specification V2.0

9/104

data. Scope is actually controlled (a) by pattern matching and, (b) membership
in groups, i.e. objects can be projected onto groups, thus possibly hiding them
from other groups. For a program in a given group, its inputs are chosen among
salient objects in said group.

Á Control over data can be propagated to other data. Objects usually reference
each other, organizing knowledge in graphs. Replicode provides built-in facilities
to propagate saliency changes from one object to other objects, members of the
same graph.

Á Application-dependent data types - and relevant operators - can be wedged in
Replicode using an API.

Models Models are similar to programs, and bring additional features and semantics:

Á In comparison to programs, models can be seen as higher-level constructs in
the sense they add semantics to their outputs (goals, assumptions or
predictions) whereas program donôt.

Á Models can be executed both ways, performing either a deduction (the output is
a prediction derived from a fact or a prediction taken as the input) or an
abduction (the output is either (a) a sub-goal, derived from the goal taken as an
input or, (b) an assumption derived from an input fact).

Á Abduction and deduction are performed simultaneously, i.e. deductions and
abductions can happen at the same time in a given model, as the result of the
processing of different inputs.

Á Models can control the execution of other models, and also, can reuse other
models.

Á Models are shared, i.e. they may contribute to the achievement of several goals
and also, can capture the behavior of several actors in the environment.

Á Models do not capture absolute truth: they contain control values that represent
(a) the number of evidences, (b) the success rate and, (c) the derivative of the
success rate. The success rate is the number of positive evidence divided by
the number of evidence. The success rate is updated by the executive, as the
model predicts events that are confirmed or not.

Á As for programs, models can be active or not: the success rate is used as the
activation value.

Á Models that consistently perform badly are eventually deleted by the executive.

Á Models that used to perform adequately and start performing badly indicate a
change of context in the domain they encode knowledge for.

Á With regards to pattern matching, models form a dynamic graph that produces
predictions and goals. This graph is fed continuously with two simultaneous
streams of, respectively, predictions and goals.

Á Backward chaining can produce several sub-goals, given an input goal: these
sub-goals may represent alternatives for solving the input goal and the system
has to evaluate these solutions in order to commit to the best ones (according to
its present knowledge). This evaluation is performed automatically by the
executive: backward chaining triggers the simulation of sub-goals that runs for a
limited time horizon. When the time allocated to simulation is spent, the system
examines the results of the simulation (these results are predictions) and
eliminates the solutions that (a) end in the failure of the goal and, (b) result in
the failure of another goal that would be deemed more important than the
present goal.

Á Models are either given by the programmer or learned by the system, that is
produced dynamically as the system accumulates experience in its
environment.

Replicode - Language Specification V2.0

10/104

3 Pattern M atching
This section describes how pattern matching is defined and performed, with respect to the
general structure of objects encoded in Replicode.

3.1 Object s
Class Definition Object classes are defined as pre-processor directives (like macros in C++)

that declare the identifier of the class, and class members (name and type). Replicode is weakly
typed: types can be atomic types (numbers, timestamps, Boolean values, etc.), structured types
(classes), but types can also be less specific (e.g. ñexpressionò, ñsetò, ñanythingò are valid
types).

Object classes are defined as follows:

(class-name m1: t1 é mn: tn)

where class-name is the name of the class, mi are the names of the class
members and ti their types.

For example, the definition of a class encoding the position of an object in a geometrical space
could be:

(mk.position object : position :vector 3 ...)

where mk.position is the identifier of a user-defined class (e.g. ñposition markerò)

and object is a reference to an object having the position position . Notice that no

specific type is specified for object : it can be an object of any class. The class

vector 3 could be defined as:

(vector 3 x:nb y:nb z:nb)

where nb is the atomic built-in type for floating-point numbers.

view is a pre-defined class holding the control values of an object. It is defined as

a set:

[ijt :u s sln :nb res:u s grp:grp org: sync:nb]

where ijt is the time when the object was produced (called injection time,

expressed in time units, type us), sln is the saliency of the object, grp is the group

where the object belongs, org is the group or the remote computing node where

the object is originating from, and sync is a number (0 or 1) that indicate if the
object will be reduced when it becomes salient or, on the contrary, when it is
simply salient. N.B.: Replicode defines variants of view for specific object classes

(like programs, see section 4.1 below).

N.B.: the notation ... is not part of the language, it is just shorthand for ñother

data omitted for the sake of clarityò

Class members can be accessed (read-only) using the following notation:

an-object. member-name

To continue with our example, to access the injection time of an object o, instance of mk.position ,

one can write:

o.vw. ijt

Projection Objects belong to groups ï they are said to be projected onto groups ï and possibly

so to several groups. Any object class contains a standard member named vw of the class view

(see example above), that holds data describing the object from the vantage point of a particular
group, see figure 2 below.

Replicode - Language Specification V2.0

11/104

Figure 2 ï Object Projections

An object o is projected onto two groups g1 and g2. Each group defines a

particular set of control values for o, called its views in g1 and g2 (v1 and v2 in the

picture). Shall o become an input for a program p1 in g1, o.vw would be valuated

with v1, whereas it would be valuated with v2 when becoming an input for a

program p2 in g2. The executive is responsible for valuating the appropriate view

of objects depending on which group they are accessed from.

N.B.: objects have a member called vws for ñview setò, that contains all its views;

for example, o.vws contains v1 and v2.

Loading Declaring a class in a source code file does not create any instance of the class. One

needs to specify the objects that are to be instantiated and loaded in memory. This is part of the
initialization of the system (see Annex 2 for details). So, in addition to class declarations, the
source code must contain initialization commands of the form:

optional-instance-name: an-object a-set-of-views

where an-object is an expression. The set-of-views argument specifies the initial projections of
an-object.

For example:

g1:(grp ...) [[now 0 50 root nil ...]]

g2:(grp ...) [[now 0 forever g1 nil ...]]

m:(mk.position self (vector3 0 0 0) ...) [[now 1 10 g2 nil] [now 0.5 20 g1 nil]]

now is an operator returning the current time, i.e. the time when the expression it is

embedded in is evaluated by the executive.

g1 is a group initially projected on a default group (called root , see figure 3 below):

its initial saliency is 0 and its resilience is 50 times the time base defined by root
(see below).

g2 is another group, initially projected onto g1: its initial saliency in g1 is 1 and its

resilience is infinite (forever).

m is a position marker initially projected on g2: self is a reference to a predefined

instance representing the system itself, the initial saliency of m in g2 is 1 and its

resilience is 10 times the time base defined by g2.

m is projected again, this time onto g1, with another view.

Circular references of objects are not allowed.

Resilience Objects are permanently deleted from memory when (a) no view exists anymore

and, (b) there is no other object referencing it. An object is referenced by another when the
latter holds a pointer to it. In our previous example, a position marker holds a reference on the
object it stores the position of. The resilience of a view is expressed as a multiple of a base
period defined by the group where the view is defined. This base period is called the update
period of the group: it the period at which the group performs some bookkeeping operations.

g1 g2

o p1 p2

v2 v1

Replicode - Language Specification V2.0

12/104

Figure 3 ï Object Resilience

An object o is projected onto one group g1. A marker m, also projected on g1 (view

vm), and holds a reference to o. The resilience control value is defined locally per

object and per group, and is in fact the resilience of the view on the object. Shall

v1 reach a resilience of 0, it will be deleted, leaving o with a single reference from

m. When the resilience of vm drops down to 0 as well, then m will be deleted,

triggering the deletion of o.

When the resilience of v2 drops down to 0, g2 is deleted and all views it holds: o2

and o3 would be deleted as well ï not o1, if v1 is still resilient. Replicode defines

an axiomatic group called root that enjoys infinite resilience: root acts as the

anchor for other groups ï in the example depicted, g1 would be projected on root ,

and would be deleted when the resilience of its view in root , drops down to 0.

Deleting v0 triggers the deletion of everything else.

When an object has no views anymore but is still referenced by other objects, its view set
becomes empty but the object still exists. However, lacking views, it cannot become inputs for
programs.

Groups are described in section 5.

3.2 Pattern s
Pattern matching is the main way to valuate formal arguments defined in programs. A pattern is
specified as an expression that may contain variables and wildcards. The structure of a pattern
is:

(ptn skeleton guards)

where skeleton defines the structure of the object to be matched, and guards is a set of

conditions on said object. ptn is the opcode identifying the expression as representing a

pattern. For an object to match a pattern, its structure must match the skeleton and it
must satisfy all the guards specified in the pattern.

For example, using the class mk.position defined in the example above, such position markers
match a pattern like:

(ptn (mk.position what: where: ::) |[])

This pattern will be matched only by objects of class mk.position . The variables what and where

would then store the actual values of the object being described and its position. In other words,
for a position marker m, what would refer to m.object and where, to m.posit i on. Notice that the rest

of the constituents of the input object (m) is ignored (tail wildcard ::). In this example, the set of

guards is empty (|[]).

Replicode allows matching patterns on sets. The operator red (reduction) admits three

arguments: (a) the set to be filtered, (b) a positive pair containing a set of patterns and a set of
productions and, (c) a negative pair of patterns and productions. The result of such a reduction
is a set containing the positive productions computed from the elements that match at least one
of the positive patterns and the negative productions computed from the elements that do not
match at least one positive pattern but match at least one of the negative ones (see Annex 1).

Patterns can also specify the structure of objects that are not expected. This allows programs

g1

o m

v1 vm

g2

v2

o1 o2 o3

root

v0

Replicode - Language Specification V2.0

13/104

to output productions upon the absence of some specific inputs during a specific time window
(see Annex 1 for details).

For performance reasons, it is not allowed to define patterns in programs without specifying the
class of the expected object. For example, it is not allowed to write input patterns to catch ñany
kind of object such as éò. This restriction applies only to patterns featured in programs, not to
patterns defining template arguments (defined below) or to pattern passed as arguments to the
red operator.

Replicode allows the definition of so-called anti-patterns (|ptn), that is, patterns that will be

matched by any object that does not match the skeleton, or does so but does not match all the
guards specified in the pattern.

Replicode - Language Specification V2.0

14/104

4 Execution Model
This section describes the behavior of programs, as executed by rCores.

4.1 Program Structure
The general structure of a program can be sketched as follows (for full details, see Annex 1):

(pgm; program

[patterns] ; a set of template arguments

[patterns] ; a set of patterns to match individual input objects

[expressions] ; a set of guards applying to the inputs objects

[productions] ; a set of productions

view
other-data
)

N.B.:

[]

 a

 b

denotes a set of two elements a and b; this also can be written [a b] .

A program specifies constraints on the input objects: these constraints are conditions taking as
arguments any part of any of the input objects and in particular, they can express correlations
between input objects.

A program has read-only access to a set of runtime data (maintained by the executive) including
(see Annex 1 for the complete list):

Â view:

 - the time of its construction: injection time (ijt);

 - saliency (sln);

 - resilience (res);

 - the group where the view is defined (grp);

 - the group that created the program (origin, noted org);

 - the synchronization mode (sync) that indicate whether the program can be an input

 only when becoming salient or when just being salient.

 - activation (act);

Â a pointer to itself: this .

Â a set of all the markers that reference it (mks)

Â a set of all its views in the groups it is projected onto (vws).

Programs are actually program templates, that is, any code fragment in the program can be
parameterized by some arguments. For example, the specification of the input arguments, the
guards or the productions can be functions of some of the template arguments. Template
arguments are specified by patterns: they express constraints on the objects to be used to
parameterize the program. As defined, a program cannot be executed without being passed
actual template arguments. Replicode provides an operator (ins) to instantiate programs: it

constructs another object, called an instantiated program (ipgm), that shares the code defined

by the program and contains the actual template arguments. The structure of an instantiated
program is:

(ipgm

code; a reference to the program having been instantiated

[actual-arguments] ; args

...

)

Replicode - Language Specification V2.0

15/104

4.2 Progr am Execution
General Model The execution of an instantiated program can be sketched as follows:

I. whenever input objects are presented to an instantiated program by the
executive and each input object individually matches its respective input pattern,
then,

II. check the guards: if none of them returns nil , or any undefined value (e.g. |[] ,

|nb , etc.) then,

III. execute the code specified in the set of productions.

Notification is provided by the executive, and describes which instantiated program successfully
matched which input objects and produced which objects at which time.

The executive handles the case when a program outputs an object, identical to an existing one:
- identity being defined as the identity of the code: the executive eliminates any duplicates.

Replicode also defines anti-programs (|pgm), programs that react when no objects match the

inputs over a specified period (the time scope tsc , see below).

Programs can also not define any input pattern and be meant to output their productions at
specific times (like timers, using the time scope). The executive will execute input-less
programs each time the time scope is elapsed.

Execution Overlays Regarding the enforcement of timing constraints (found in the guards

section) on the inputs of a program, the executive performs according to rules exemplified in the
following situations:

I. In the example of an instantiated program iP whose code contains only one
input pattern IP and no guards, if an object o1 is received, then the executive
spawns a copy of iP to process o1, and is then ready to spawn other copies of iP
upon reception of subsequent objects oi matching IP while o1 is being processed:
the execution is overlaid (and copies of an instantiated program are called its
overlays). This rule applies in a more general way to instantiated programs
featuring any number of input patterns and guards (see other rules below).

II. In the example of an instantiated program iP built from a program P like:

P:(pgm

|[] ; no template arguments

[]

 ptn1: (ptn o1: skel1 guards1)

 ptn2: (ptn o2:skel2 guards2)

[] ; guards

 (> o2. vw.ijt (+ o1. ijt 10)) ; ijt=injection time member

 (< o2. vw.ijt (+ o1. ijt 20))

 ...

...

)

iP receiving inputs like:

a1 (matching ptn1) at time t,

a2 (matching ptn1) at time t+5,

b (matching ptn2) at time t+22

triggers, upon reception of a1, the spawning by the executive of a copy of iP, iP1, whose

code would be equivalent to:

(pgm

|[]

[]

 (ptn o2:skel2 guards2)

[]

 (> o2. vw.ijt (+ a 1. ijt 10us))

 (< o2. vw.ijt (+ a 1. ijt 20us))

 .. .

...

)

Replicode - Language Specification V2.0

16/104

where o1 is valuated by a1. According to the rule from the example 1 above, upon

reception of a2, the executive spawns another copy of iP, iP2, where o1 is

valuated by a2. iP, iP1 and iP2 now run in parallel.

Upon reception of b by iP1, the timing constraint is violated and the executive

kills iP1.

Upon reception of b by iP2, the timing constraint is respected and further

processing by iP2 is allowed.

III. In the example 2 above, let's change the order of arrival of b and set it to t+18.

Then, upon reception of b by iP1, the timing constraint would be respected and

iP1 would output a production, a function of a1 and b. In a similar way, iP2 would

output another production, a function of a2 and b.

IV. An instantiated program defines a time scope (tsc), i.e. a limit in time beyond

which an overlay is automatically killed by the executive. This means that a
program will not attempt to match any input older than tsc .

V. Overlays are killed when the instantiated program looses activation or dies
itself. However, any ongoing computation will not be terminated before
completion. In other words, if an overlay is to be killed while being currently
producing objects, these will be injected before the overlay is actually killed.

From the vantage point of other programs, overlays simply do not exist, i.e. overlays are hidden
by the original instantiated program and the notification of the reduction (see below) refers to
the original instantiated program, not to any of its overlays.

Notification of Reduction Each time an overlay ouptuts productions, the reduction is notified

by the executive by injecting markers (class mk.rdx) referring to the program that performed the

reduction, and containing the sets of both its inputs and its productions. The structure of such a
notification is:

(mk.rdx code inputs : [] prods:[] other-data)

where code is a reference to the instantiated program, and inputs and prods are sets of objects.

For example, assuming a program P like:

P:(pgm

|[]

[]

 (ptn a:(...) ...); pattern1

 (ptn b:(...) ...); pattern2

[]

 (inj [(...) ...]) ; command1

 (inj [(...) ...]) ; command2

...

)

then, when an instantiated program iP (built from P) reduces two input objects o1

and o2 (matching, respectively, pattern1 and pattern2), then the executive injects a

reduction marker as follows:

(mk.rdx

iP; code, i.e. a reference to (ipgm P |[])

[o1 o2]; inputs

[]; prod s

 (evaluated_command1)

 (evaluated_command2)

...

)

The commands featured in the reduction marker are embedded expressions.
These expressions are evaluated, i.e. are the result of the evaluation of the
commands at production time. For example, if, in P, command1 was:

(inj [a_new_object:(mk.position a ...) ...])

then in the reduction marker, evaluated_command1 would be:

(inj [a_new_object ...])

Replicode - Language Specification V2.0

17/104

where a_new_object would be a reference to:

(mk.position reference-to-o1 ...)

Dynamic Program Production Programs are state-less, that is, programs do not encapsulate

private persistent application-dependent data
4
.

This means that the only way for programs to memorize application-dependent states is for
them to refer to common knowledge, i.e. objects that are accessible by any other program. In
other words, programs refer to states by pointing to external objects.

To memorize a state, there is also the possibility to alter a program's code dynamically that is -
more accurately - to produce a variant that would embed some prior state: the variant would be
built as a function of some previous input objects (the so-called state) caught by the original
program. For example, let's consider the following case: an instantiated program iP0
continuously outputs the position of an entity ï a ball, under the control of yet another program.
We need a program iP1 that outputs an object L holding the last known position of the ball ï

and also, there is no need to produce L when the ball is stationary. L is an instance of a class

defined as (mk.last_known data:mk.posi t i on ...) . Here is a possible encoding for P1 (which

would be instantiated to form iP1) ï P1 depends on another program P2:

P1:(pgm

[]

 (ptn (mk.position ref_b: ref_pos: [ref_t: ::] ::) |[])

[]; input s

 (ptn m:(mk.position b: pos: [t: ::] ::) []

 (= b ref_b)

 (> t ref_t)

 (<> pos ref_pos)

)

|[]; guards

[]; productions

 (inj [(mk.last_known m .. .)]) ; builds L

 (inj [(ins P1 [b pos t])]) ; instantiates P1 with b, pos ..

and t as actual template arguments

 (set [this. vw.res 0]); kills the original

)

P2:(pgm

[(ptn ref_b: |[])]

[] ; inputs

 (ptn m:(mk.position b: pos: [t: ::] ::) [(<> b ref_b)])

|[]; guards

[]; productions

 (inj [(ins P1 [m]) ...])

 (inj [(ins P2 [b]) ...])

 (set [this.v w.res 0])

)

iP2: (i pgm P2 [nil] ...) [[...]] ; initial injection of iP 2

Notation:

; is a comment.

.. is the line continuation symbol.

... means that additional code is omitted for clarity.

inj is a function call to the executive to produce new code and make it available in

the system (store in memory).

set is a function call to the executive to request to set the resilience of i P1 to zero.

The executive accumulates potential similar requests on i P1 issued in a (tunable)

4
 Programs however, do hold control values in their views (saliency, activation, resilience, injection time) but

only have limited access to these: the executive maintains (writes) these values. For this reason, and also
because these values are not related to the application domain, they are not considered internal states.

Replicode - Language Specification V2.0

18/104

time window and decides a final value accordingly.

P1 is parameterized by the last known position marker referring to a ball. When it

catches another position marker m for the same ball, it produces a new instance of

mk.last_known, instantiates P1 with m and kills itself. In this respect, notice that this

in P1 refers to the instance of P1 being executed ï this evaluates to an

instantiated program.

P2 is parameterized by a ball, ref_b . The role of instances of P2 is to create

instantiations of P1 for any new ball b - different from r ef_b - for which the

position is reported, and to produce another instance of P2 that would react on
balls other than b.

Manual injection of objects is performed by defining the code of the object,
followed by a set of views.

Notice that P1 could be augmented so that it would also kill previous occurrences

of L; in our example such occurrences would die ñnaturallyò, i.e. after the delay

specified by their resilience value (not shown in the code).

Explicit program instantiation from template arguments is not the only way to generate
programs. Any program can build new code from scratch and generate corresponding new
programs. For example:

Assuming a vector class vec3 and a position marker defined as:

!class (vec3 x.nb y:nb z:nb)

!class (mk.position (_obj {obj:ent pos:vec3}) ; points to an.. entity and holds a

vector.

P1:(pgm

|[]

[]

 (ptn (mk.position e1: v1: ::) |[])

|[]

[]

 (inj []

 P2:(pgm

 | []

 []

 (ptn m:(mk.position e2: v2: ::) [<> e1 e2])

 |[]

 []

 (set [m.vw.res 0])

 (inj []

 (mk.position e2 (\ (+ v1 v2))) 1)

 [(\ now) 1 forever root nil]

 ...

)

 [now 1 forever root nil]

 (in j []

 (ins P2 |[] [now 0 forever root nil 1])

)

...

)

P1 builds a program P2 that adds P1ôs input vector v1 to P2ôs own input vector v2.

Notice the use of the \ operator that prevents evaluation (similar to the quote

operator in LISP). The expressions in P2 that follow the \ operator are not

evaluated when P1 is. They will be evaluated when P2 is actually injected,

instantiated and performing a reduction.

Batched Productions When a program outputs some productions, the executive stores them in

memory and make them available for further referencing by other productions. This is performed
as a batch: first, all productions are computed, and then they are made available. This allows
productions to refer to each other. For example, a program can create a new object n and a

Replicode - Language Specification V2.0

19/104

marker m on n:

(pgm

...

[]; productions

 (inj [n:(...) ...])

 (inj [(mk.whatever n ...) ...])

...

)

Circular references are forbidden ï caveat: no check is enforced at runtime in this version of the
specification and the behavior of the executive in such cases is undefined.

The general form of a production is either a command to an external device:

(cmd device function [arguments-of-the-function])

or an internal command (icmd), i.e. a command to be performed by the executive itself. The

injection commands used in the examples are actually macros and are expanded as follows:

(i cmd _inj [object view])

where _inj is the actual function, object is the object to be injected and view is a view for the

object
5
:

[ijt :u s sln :nb res:nb grp:grp org: sync:nb]

it contains an injection time ijt - to be interpreted as ñinject the object not before ijt ò ï and a

destination group (grp), where the object will be projected using the specified view. org will be

valuated by the executive, and can initially be set to nil . It is possible to set injection times in

the future, i.e. later than now.

Commands are not system objects, i.e. they donôt exist freely in memory: they are always
embedded in code fragments. When the fragment is a production, the executive interprets these
commands as actual function calls in case the specified device is the executive, or as
messages to an external module otherwise. In the latter case, the messages carry the r-code
corresponding to the command, and the device shall transform this r-code into its own internal
representation.

Execution Eligibility When an object is produced, its producer assigns it an initial saliency

value which can be changed over time by other programs. An object is eligible to become an
input for any program in one of two cases, depending on its viewsô sync parameter value:

0 - Synchronization on front: each time an object having a low saliency value is
modified by a program so that its saliency gets high enough, said object is passed
by the executive as a potential input to all active programs. This means that
objects become potential input data when they cross a saliency threshold: once
salient, they cannot be processed by programs anymore ï to do so, they would
have to lose and regain saliency.

1 - Synchronization on state: an object becomes an input for any program
whenever it is salient, regardless of its crossing the threshold.

When a program becomes deactivated (see section 6.1), it goes ñasleepò and will not receive
any inputs anymore. When it wakes up, it receives inputs again as previously, that is, it receives
as inputs the objects that are or become salient after it wakes up ï depending on the objectsô
viewsô respective sync parameters.

Expressivity Combining the two kinds of programs (pgm and |pgm) and the two kinds of patterns

(ptn and |ptn) yields for main modes of execution. For the sake of simplicity letôs consider a

pattern P designed to match objects having the structure S. We denote by |P the corresponding
anti-pattern. letôs also ignore timings, guards and multiple patterns. Then:

I. a program P1 that uses P will reduce any object of structure S as soon as it is
eligible for reduction;

II. a program P2 that uses |P will reduce any object that does not have the
structure S, as soon as it is eligible for reduction.

III. an anti-program P3, with a time scope T and using P will build its productions
any time when, after T, no object having the structure S has been eligible for

5
 There are specific kinds of views for instantiated programs and for groups that add, respectively, an

activation or a visibility value to the set of view members.

Replicode - Language Specification V2.0

20/104

reduction;

IV. an anti-program P4, with a time scope T and using |P will build its productions
any time when, after T, no object having not the structure S has been eligible for
reduction; in other words, P4 will build its production if it observed either nothing
or only objects that had the structure S.

Notice that only P3 and P4 can react to the total absence of objects: P1 and P2 need actual
inputs to trigger their reductions. Notice also that P4 is not equivalent to P1: P4 imposes the
constraint of maintaining its requirements (|P) over a period of time (T), whereas P1 would react
immediately upon the occurrence of an object having the structure S.

Replicode - Language Specification V2.0

21/104

5 Groups
To organize the collaboration of a multitude of programs calls for distributing and controlling
their execution at both the individual scale - single Replicode constructs - and the collective
scale ï from aggregates of a few individuals, up to the scale of an entire system. This section
presents the facilities offered by Replicode to control computation at both the individual and
collective scales.

5.1 Individual S cale
Objects in Replicode are controlled individually by a set of control values held by their views,
namely, resilience, saliency and ï for instantiated programs ï activation.

The resilience is a delay (expressed as a multiple of a period defined by the group where the
view lives) after which, if left unchanged, the view will be permanently removed from the
memory by the executive ï although, at the developer's convenience, objects can also be set to
live forever (see Annex 1).

The saliency is a value (in [0,1]) that controls whether an object can be an input for instantiated
programs or not, whereas the activation is a value (also in [0,1]) that controls whether an
instantiated program will receive inputs or not (i.e. as discussed in section 4.1, whether it is
ñasleepò or ñawakeò).

Activation and saliency are evaluated by the executive against thresholds defined in groups:
below (or equal to) its respective threshold a control value is considered ñoffò, above ñonò.

Any program in a given group can request modifications on any control value of a particular
object. The executive will gather these requests and, at a certain frequency, will use the
average as the final value: each group specifies a particular update period (upr) for the control

values of the objects it contains. Requests for modification are expressed by the functions mod

and set followed by a selector on the value and, depending on the function, either a signed

increment or an absolute value. This way of gathering requests and computing final values from
them is called mediation. Notice that thresholds defined in groups are also control values and
are also mediated.

5.2 Collective Scale
Basically, a group is a set of views on some objects: these objects are said to be projected onto

the group. A group gathers objects that collectively perform some function and/or represent
some particular knowledge. From an architectural perspective, groups bring the following
capabilities to a system (the underlying mechanisms are presented after this overview):

Á Sub-systems: a group behaves like a small production (sub-)system in itself. In

particular, each group defines its own thresholds for controlling locally the
saliency and activation values. Generally, objects projected onto a group are not
visible from programs that are not projected in this group, nor can they access
objects that are not in the same group.

Distributing objects amongst groups allows reducing the number of candidates
for pattern matching: this is not only a performance issue but also a design
issue, in the sense that such a distribution allows preventing some reductions to
occur that would have otherwise been possible but not desired.

Á Controllable scope: the scope of objects in groups can be adjusted

dynamically. Since groups are regular objects, they can be projected onto other
groups: when a group G1 is projected onto another G2, under certain
conditions, the content of G1 can be made visible to the programs in G2. This
relation is called group visibility and can be adjusted at runtime. It is also
possible to inject objects into other groups, and groups can be parameterized so
that the salient content of a group G1 is copied into another group G2 when G1
becomes visible from G2 (this feature is called copy upon visibility).

Controlling the scope of objects allows defining dynamically reduction pathways
across the system.

Á Local time scales: each group defines its own update period as multiples of

the systemôs base period.

Replicode - Language Specification V2.0

22/104

The update period is the period at the end of which all mediated values are
assigned a final value by the executive. For example, it is at the end of each
update period that saliency and control values change; it is also when views are
deleted from memory when their resilience expires.

Á Control over collectives: the content of groups can be controlled as a whole in

two ways.

First, a group defines two additional control values ï c-saliency (content
saliency) and c-activation (content activation) ï that allow changing the
saliency/activation status of all objects in the group. These values are controlled
using thresholds also defined locally for a group.

Second, groups also implement automatic decay on either the saliency of its
members or on its own saliency threshold: this allows programming cycles of
changes in saliency, this being equivalent to defining cyclic eligibility of
knowledge (synchronized on front) as inputs for programs.

Control over collectives achieves the same results as controlling individually
each group member, but reduces drastically the number of operations involved
and the number of programs that would have been needed to perform these
operations.

Á Propagation of saliency: under certain conditions, saliency changes on an

object are propagated by the executive to its markers ï and, possibly, to the
objects referred to by these markers.

In short, saliency can be propagated within graphs of related objects: these
graphs would then constitute graphs of semantically related objects (the
prototype of such semantic clustering is an associative memory).

Notice that this current specification does not defines the propagation of values
other than saliency. In particular, the propagation of activation values is not
defined.

Sub-systems Sub-systems are implemented as groups. They are first class objects and as

such, are injected into other groups using the injection command (inj). Groups define their own

mediated values (for example, thresholds on activation and saliency) and these values can be
modified by programs, as they would do for the control values on individual objects.

Figure 4 ï Sub-systems

An object o1 is projected onto two groups g1 and g2. As defined earlier (section

3.1), o1 will be viewed from g1 and g2 with, respectively, different sets of control

values, i.e. the views v1 and v2. o1 also holds a reference to another object o2. If

a program p in g1 acesses o2 via o1, then it would see o2 with a nil view, regardless

of the actual projections of o2. This also holds for a marker m on o1. If p accesses m

via o1.mks, m would appear to p with a nil view.

g1 and g2 define their own thresholds on these control values and, as a

consequence, o1 can be salient in g1 but not in g2.

As depicted, g1 and g2 are not related and their content is hidden from each

other. This means that no program in g1 can process inputs from g2 and vice-

versa.

If an object is injected in a group for the first time, and is salient in that group, this has the same
effect as for an existing object to cross the saliency threshold upward. In other words, the newly

g1 g2

o1

v2 v1

o2 m

p

Replicode - Language Specification V2.0

23/104

injected object is eligible for processing as an input. In additon, the executive notifies such a
first-time injection (mk.new).

When an object is created, the executive checks for identical existing objects among all objects
present in the same node. The identity that is checked for is the identity of the code of the
object and of the references it holds to other objects - its markers and views are not checked.
When the new object turns out to be identical to an existing one, the latter replaces the former.
This check applies to objects and therefore does not depend on group membership.

When an object is injected in a group, the executive performs another identity check, this time
among all the views exisitng in the group. In case the object is already projected onto the group
(a view on the object is already defined), then the executive replaces the old view by the new
one.

Replicode defines a special group called root : it is a group with infinite resilience meant to

gather - directly or indirectly ï all objects in the system. root is never deleted, regardless of the

number of references to it. N.B.: there exit two other default groups that are never deleted
either (see section 7).

Controllable Scope The injection command admits an argument that references a target

group, that is the group where an object is to be injected (i.e. projected). Either this target group
is caught by a program as an input, or it is a hard-coded reference. For example, in figure 4
above, a program p in g1 could inject an object directly in g2: since g2 is not projected on g1, g2

cannot be an input for p, and p would have to explicitly refer to g2 (i.e. hold a pointer to it).

Groups are not programs and thus, their views do not include activation values. Instead, they
contain another mediated value called visibilty (vis) that controls whether or not the content of a

group, when projected onto another, is visible from the latter group. Like other mediated values,
this value is compared against the visibility threshold (vis_thr) defined by the group. Visibility is

not transitive.

Figure 5 ï Visibility

An object o is injected in g1 with a view v1; it is also a member of g0, with a view

v0. Assuming two active programs p0 and p1 respectively in g0 and g1:

- if o is salient in g0, p0 can react to o with the saliency v0.sln;

- if o is salient in g1, p1 can react to o with the saliency v1.sln;

- if g1 is visible in g0, p0 can react to o with the saliency v0.sln;

For another object o1 projected onto g0, g2 and g3:

- if o1 is not salient in g0, but is salient in g2 and g3 and g1 and g3 are visible in g0,

p0 can process o1 twice, each time with a different saliency, i.e. v2.sln and

v3.sln ï assuming o1 is or becomes salient in its respective groups and

matches one of the inputs of p0.

Visibility is not transitive: if g0 is visible in g2 and g1 in g0, then g1 is still not visible

in g2.

In case an object is visible from multiple groups (thereafter called sources), it will be eiligible for
becoming an input if it is or becomes salient in at least one of these sources, and if it is actually
processed by programs its saliency will be taken as the value held by its views from the sources
where it is visible from. This means that said saliency values must be comparable, i.e. be

g1

g0

O

v1

v0

p0

p1

g2

g3

o1

v2

v3

v4

Replicode - Language Specification V2.0

24/104

expressed as a ratio to the threshold defined in their respective sources. In such cases, the
executive applies a correction to convert the saliencies defined in the sources into values that
can be compared against the threshold defined in the group where the object is processed.

Shall an object become visible from a group G for the first time, this would be treated exactly as
if the object was injected in G for the first time: notification would occur in the groups where the
object is being injected, and said notifications would be visible from G.

Groups define a view member called cov (for ñcopy on visibilityò), not mediated. When a group
(thereafter called source) is visible from another group (the target) and in this group, the
sourceôs cov is set to 1, then its content will be copied into the target. The following rules apply:

- the target group must be c-salient and c-active (see sub-section Control over
collectives).

- only the salient content of the source is copied into the target.

- as for visibility, the control values of the objects being copied are converted into
values suitable for comparison in the target group.

Local Time Scales Mediated values are computed by the executive over a period called

update period, defined by each group (member upr). They are computed as follows: at the end

of each update period, the requests for change (issued by programs using the commands mod

and set) are averaged and the result is added to the value to be controlled. Some objects

(synchronized on front) can be processed when they cross the saliency threshold in the group
and this is checked at the end of each update period. As a consequence, modifying the update
period of a group has a direct impact on the reactivity of its active content.

When visibility is involved ï like when a group g1 is visible from another group g2 ï the final

mediated values of visible objects are computed at the end of the period specified by the group
performing the reduction (e.g. g2).

Control Over Collectives As for any object, a group g1 - projected onto another group g2 - is

said salient when its saliency in g2 is above the saliency threshold defined by g2. The groupôs

saliency controls the saliency of the group as an object, not the saliency of its content. To
control the saliency or activation of the content of a group (thereafter referred to as c-salinecy
and c-activation), four additional control values are provided:

- c_sln and c_sln_thr : define respectively the saliency of the content of the group and

the threshold to which the former is compared to determine the saliency of all group
members;

- c_act and c_act_thr : the same as above, defined for the activation of the members.

When a group is not c-salient, none of the objects it contains can be inputs for any program in
the group. When a group is c-salient, the objects it contains can be inputs if they are salient
themselves.

When a group is not c-active, none of the programs it contains can run. When a group is c-
active, its programs can run if they are active themselves.

A groupôs c-saliency takes precedence over the saliency of its members. This means that c-
saliency acts like a mask on the individual saliencies of the group members. The same
observation holds for activation vs c-activation.

When multiple changes to saliency, saliency threshold, c-saliency, and c-saliency threshold are
made during a single update, an object is presented as an input to programs if, before the
update, the object was not salient and/or the group was not c-salient; and after the update, the
object is salient and the group is c-salient.

When, at an update period, both the group c-activation changes and the activation of a member
changes, then the memberôs activation is computed, then the c-activation of the group. If the
group is c-active, then the member starts receiving inputs. If the group is not c-active, then the
object does not receive any inputs regardless of its own activation.

Replicode - Language Specification V2.0

25/104

Figure 6 ï c-saliency and c-activation

If g1 is not c-salient, o1 cannot be an input for p1, even if o1.vw.sln > g1.sln_thr . If

g1 is not c-salient, o2 cannot be an input for p1, but can still be an input for p0 and

p2, if o2.vw.sln > go.sln_thr .

If g1 is not c-active, p1 cannot process anything, even if p1.vw.act > g1.act_thr . If

g1 is not c-active, p2 cannot process anything in g1 but can in g0 if it is active in

g0.

As mentioned earlier, an object synchronized on front is eligible for processing when its
saliency crosses the saliency threshold upward. Consequently, once salient, such an object will
never become an input again, unless its saliency crosses the threshold downward and upward
again, or the threshold itself gets higher than the objectôs saliency and lower again. Another
consequence can also be deduced from the eligibility rule: if an object that is already salient in
a given group is injected again, it will not be processed again. However, depending on the
programmerôs intention, it could be advantageous to treat this renewed injection as an
indication of saliency, intuitively ñthe object occurs again to the mind of the systemò. As a
convenience, groups offer extra parameters to define an automatic decay of the saliency values
of all its members ï this way, the saliency of an object will decrease over time and a new
injection of the same object is likely to pass the eligibility check. This decay can be applied
either to the saliency values of the groupôs members or to the saliency threshold of the group.
The following parameters specify the decay function:

- dcy_per the target percentage of the control value: if 0, no decay will be

performed; if negative, the percentage is interpreted as a decrease (decay); if
positive, as an increase.

- dcy_tgt what the decay shall apply to: if 0, applies to the saliencies of the

members, if 1 to the threshold of the group.

- dcy_prd the period of the decay, expressed as a multiple of the update period

defined for the group.

- dcy_auto a flag indicating whether or not the group shall resume decay after the
decay period has expired.

For example, a decay can specify a behavior like: ñdecrease saliencies down to 80% of their
value (taken at the last injection time), within 4 times the update periodò. In this example, if an
object o is injected with a saliency s1 during a period P, 4 periods after P, the decay will not be

applied anymore, and at P+5, o. vw.sln=0.2*s1 - assuming no explicit changes by mod/set have

been issued by some programs. If during these 4 periods, say during period P+3, there is a new

injection of o with a saliency s2, two cases can arise:

a - if s2>o. vw.sln at P+2, the decay is reset, using s2 as the initial saliency for o, and

will thus apply until P+8.

b - if s2<o.vw.sln at P+2, the decay continues on as if nothing happened.

Technically, this means that during each update period, the saliency is decreased by 20% of
what it was the last time some program injected the object in the group. In other words, this is
equivalent to one execution of:

(mod [o . vw.sln ((* o . vw.sln-at-last-injection-time - 0.2)])

per update period. Such a modification competes with the explicit calls to set and mod issued by

any program.

g1

g0

p0

p1 o2
o1

p2

Replicode - Language Specification V2.0

26/104

Decay parameters (as any other control parameters in groups) are not mediated (i.e. the last to
talk wins).

Propagation of Saliency When some objects are related to eachother (think of Proustôs cake),

it can be useful to express this relation in terms of concrete control: if two objects o1 and o2 are

in a semantic relation, then when o1 becomes salient one may expect o2 to also become

salient. Replicode addresses this issue in a general way: changes of an objectôs view saliency
can propagate to the objects it is related to, namely its other views and the views of its markers.

Each object class defines one additional member (psln _thr) a threshold to control the

propagation of saliency changes. Basically, when an object sustains a change of its saliency
and this change is (in absolute value) greater than the threshold, then it is propagated, inhibited
otherwise.

Propagation applies only to the markers of the object. If some of these allow propagation
themselves, then the propagation will be applied to their own markers and also to the objects
they may explicitly refer to in their code.

Propagation applies to all views of the recipients. When propagated to other objects, saliency

changes are adjusted (as mentioned in the sub-section Controllable scope) to the respective
thresholds of the groups where the recipients of the change are projected.

The executive detects cycles in the object graph and prevents recursive propagation.

Figure 7 ï Propagation of Saliency

The links in grey show the path of saliency propagation. When the saliency of an

object o1 changes in a group g1, it is propagated to all the markers referencing o1

(here m1) ï path marked 1.

If the propagation is enabled in m, then the change is propagated to all markers

attached to m1 (m2) and to all objects referenced by m1 ï path marked 2. Changes

are applied to all views of the recipients (v3, v4 and v5), if they have some (m1 does

not).

The executive blocks recursive propagation: in this example, m2 hold a reference

to o1, but o1 is part of the propagation path, and thus, no saliency changes

incurred by m2 will be applied to o1 (path marked X).

Notifications Groups provide several notifications to reflect the status of the various control

values defined for its members. These notifications are (see the definition of groups in Annex 1
for the details):

Á changes of saliency, activation and resilience, monitored over a period specified for
the group.

Á control values reaching peak values (high or low, with respect to some thresholds
defined for the group). This applies to saliency, activation; for resilience, only the low
peak value is notified

6
.

Á first time appearence of an object in the group (see sub-section Sub-systems above).

Á reductions: each time an instantiated program outputs productions, this is notified
(mk.rdx, see Annex 1), and such notification includes references to both the inputs and

6
 The notification of a low resilience warns programs of the possibly imminent deletion of an object.

g1 g2

o1

v2 v1

o2

m1

g3

v3 v4

1

1
2

2 2

m2

2

v5

2

X

Replicode - Language Specification V2.0

27/104

the outputs of the instantiated program which performed the reduction.

Each group contains a set of references to destination groups where these notifications are to
be injected ï when a reference is nil , the destination is the group itself.

Groups also expose ñstatisticsò, i.e. the highest/average/lowest saliency/activation values
among its members. These are computed at the end of each update period, and are accessible
as members of the group class.

Replicode - Language Specification V2.0

28/104

6 High -Level Reasoning
Replicode provides support for non axiomatic logical reasoning. In Replicode, reasoning means
inducing and deducing. As mentioned in the overview, the language defines several classes of
objects (facts, goals, predictions) upon the production of which the executive can perform
forward and backward chaining using models. This is called high-level reasoning - as opposed
to the low-level reductions that have been presented in the sections above ï because of (a) the
semantics ascribed to the production of models (predictions and goals) and, (b) the non-
axiomatic nature of the encoded knowledge (confidence values for facts, predictions and goals,
success rates and number of evidences for models).

6.1 Predicates
The classes of predicates are defined as follows

7
:

Facts Facts are objects that points to other objects and indicate two timestamps (defining the

time interval where the fact is believed to hold), and a confidence value (in [0,1]) indicating how
reliable the fact is; this value is not a probability.

Facts come in two classes fact and |fact , the latter (so called ñanti factò) denotes the absence

of a fact. The syntax of a fact is:

(fact an- object after before confidence - value)

where after denotes the time after which the fact holds and before denotes the time

before which the fact holds: these two timestamps define the interval of validity of the
fact. At time t , the fact holds if and only if after<=t<=before .

Inputs coming from the environment (technically, data produced by the I/O devices) come in the
form of facts for which the time interval is reduced to a single point in time (the time the input
was produced) and for which the confidence value is one (since the fact represents an
observation in the environment).

For matching purposes, the executive defines two parameters ï time_tolerance (in

microseconds) and float_tolerance (in [0,1]). Two numerical values or two timestamps are

deemed to match if they are within the same tolerance interval, i.e. one of the value plus/minus
the tolerance.

Goals Goals are objects either given by the programmer or produced by programs or by the

executive as the result of backward chaining. A goal is the specification of a target state, in the
form of a reference to a fact, and of an actor, that is the entity that pursues the goal. The syntax
is:

(goal a - fact an- actor)

the confidence value held by a- fact is interpreted by the executive as an estimate

of the chances of success for the goal, i.e. the likelihood that a- fact will actually

be observed.

A goal constitutes knowledge the system can reason about and thus is pointed to by a fact. This
fact encodes the likelihood of the goal to be valid (that is the interpretation of the confidence
value) and the time interval in which the goal holds. These values (confidence and time interval)
are distinct from the values found in the fact pointed to by the goal.

The confidence value of a goal is interpreted by the executive as the saliency value of the fact
holding the goal. In other terms, the saliency of the fact holding the goal is set by the executive
to the confidence value of the goal target. As a consequence, goals with low confience values
i.e. low chances of success) will have a low saliency and, depending on the relevant saliency
thresholds, may be hidden from programs, models and composite states.

Predictions Predictions are objects produced by the executive as the result of forward

chaining. The syntax is:

(pre d a- fact)

where a- fact is a pointer to the predicted fact: the confidence value held by this

7
 As any object, predicates have their last member encode the saliency change propagation threshold

(psln_thr). This member is not indicated in the syntax for clarity. See Annex 1 for the full definition of these

objects.

Replicode - Language Specification V2.0

29/104

fact is interpreted by the executive as an estimate of the chances of success for
the prediction, i.e. the likelihood that a fact will confirm the prediction.

As for goals, a prediction constitutes knowledge the system can reason about and thus is also
pointed to by a fact. This fact encodes the likelihood of the prediction to be valid (that is the
interpretation of the confidence value) and the time interval in which the prediction itself holds.
These values (confidence and time interval) are distinct from the values found in the fact
pointed to by the prediction, i.e. the predicted fact.

As for goals, the confidence value of a predicted fact is interpreted by the executive as the
saliency value of the fact holding the prediction. In other terms, the saliency of the fact holding
the prediction is set by the executive to the confidence value of the predicted fact. As a
consequence, predictions with low confidence values (i.e. low chance of confirmation) will have
a low saliency and, depending on the relevant saliency thresholds, may be hidden from
programs, models and composite states.

Notifications of Success or Failure The executive notifies the success or failure of goals and

predictions in the form of objects of class success. Notifications are held by facts or anti-facts. In

the latter case, what is notified is a failure (i.e. an absence of success). The syntax is:

(success a- fact an- input)

where a- fact is a pointer to a fact that points in turn to either a prediction or a

goal; an- input is the actual input that matched the goal or prediction (case of a

success) or the negation of the fact that should have occurred to secure success
(case of failure).

A notification is issued for a prediction when, at the predicted deadline (the before time value

held by the predicted fact) a fact has occurred during the predicted time interval (defined by the
after and before values held by the predicted fact) and matches the predicted fact (success) or

no such fact has happened during the predicted time interval (failure). In the case of a failure
the executive asserts the absence of the predicted fact in the form of anti-fact pointing to the
same object the predicted fact was referring to.

A notification is issued for a goal when, at the goal deadline (the before time value held by the

goal target, i.e. the fact the goal refers to) a fact has occurred during the time interval specified
by the goal (defined by the after and before values held by the goal target) and matches the

goal target (success) or no such fact happened in the prescribed time interval (failure).

6.2 Composite State s
A composite state is a set of patterns of facts that shall happen at the same time. Composite
states are intended to group synchronous inputs into one single construct. The executive scans
the memory and attempts to match the patterns. When all are matched, the executive produces
an instance of the composite state (icst). The syntax of a composite state is:

(cst [set - of - tpl - arguments] [set - of - patterns] [set - of - forward - guards] [set - of -

backward- guards] [set - of - ouput- groups])

The first set contains template parameters (in a similar fashion as in the case of
programs): these parameters are variables.

Patterns used in composite states (and models) differ from patterns found in
programs in that they do not define any set of guards: they are merely facts that
contain variables.

Guards are expressions, as found in programs, that are evaluated by the
executive to control chaining. In contrast to programs, Replicode allows
assignment operations in guards.

The set of output groups is the set of the groups where the instantiated composite
state is to be injected upon successful match.

The syntax of an instantiated composite state is:

(icst a - cst [set - of - template - values] [set - of - values])

where a-cst is a pointer to a composite state, the set of template values is the set
of the actual values assigned to the template arguments and the set of values
contain the values assigned to the variables during matching.

As in the case of programs, a composite state defines several patterns that can be matched by
any combination of facts, each matching one pattern. The executive catches all these

Replicode - Language Specification V2.0

30/104

combinations and outputs as many instantiated states as it found combinations. This is
technically achieved in the same way as for programs, using overlaid reductions.

When all patterns are matched, the forward guards are evaluated and if all of them succeed, an
instantiated state is injected. The confidence of the instantiated state is the lowest of its inputs.

Shall at least one input be a prediction, then the instantiated state will be injected as a
prediction itself.

For clarity, letôs consider an example:

s:(cst |[] []

(fact (mk.val an_object: essence ΓcubeΔ ::) t: t: ::)

(fact (mk.val an_onject: color ΓblueΔ) t: t: ::)

|[] ; no forward guards

|[] ; no backward guards

[stdin])

Basically, s encodes a state of the environment that asserts the presence of a

blue cube, i.e. a state where there is an object whose essence (defined by the
programmer in the ontology) is a cube and whose color (also part of the ontology)
is blue. Whenever such a state is discovered by the executive, say a particular
object x matches the state at time t0 , an instance of s is injected in the stdin

group. This instance should, in principle, be encoded as follows:

(fact (icst s |[] [t0 x] 1) t0 t0 1) ; confidence is 1

Notice that the actual values (t0 and x) appear in the value set in the same order

as the corresponding variables (an_object and t) appear in the composite state.

Notice also that t0 appears redundantly (it is both in the instantiated state and in

the fact): the language eliminates this unnecessary redundancy and, instead of
the fact mentioned above, actually injects:

(fact (icst s |[] [x] 1) t0 t0 1)

This example does not make use of guards: these will be exemplified in the next
section.

Composite states can be composed of other states: one would simply define patterns of
instantiated states instead of patterns of raw inputs (like the markers in the example given
above).

Commands cannot be part of a composite state (they can only appear in models) ï see next
section.

A composite state can also produce sub-goals, upon catching a goal targeting an instance of the
state. In case there exist no model able to produce the targetted instance, the executive
produces as many sub-goals as there are patterns in the state, provided all the backwards
evaluate successfully. Otherwise, it is the duty of the models to induce their own sub-goal from
the targeted instance. If the targeted instance is held by an anti-fact and there is no model able
to produce said instance, then the sub-goals are produced as above, excepted that all facts are
inverted (facts tunr into anti-facts and reciprocally).

6.3 Models
Knowledge is essentially encoded as models. It is these models that operationally encode the
semantics of the phenomena observed in the environment. Models deduce and induce. In
Replicode, deduction is the production of predictions given an input fact (actual or predicted),
whereas abduction refers to the production of sub-goals, given an input goal.

As mentioned in the introduction, models are either given by the programmer or learned by the
system, i.e. acquired from observation and revised. Replicode does not define any model
acquisition sub-system: it is expected to be provided by the programmer as an extension of the
executive. However, Replicode provides the infrastructure for revising models: the executive
monitors the execution of models and updates their success rates accordingly, and these
success rates are used in turn to control the execution of models (they are interpreted as
activation values, as the ones defined to control programs). The success rate of a model is the
number of positive evidences divided by the total number of evidences. By positive evidences
we mean the number of times a model has predicted well (e.g. the predicted fact actually came
true); the total number of evidences is the number of times the model produced a prediction,

Replicode - Language Specification V2.0

31/104

regardless of its outcome (success or failure).

A model is essentially a pair of patterns and two sets of guards (as for composite states), and
encodes a production rule of the form A Ą B where A and B are patterns of facts as defined for
composite states. Thus a model has only one input and one output: during forward chaining the
input is the object matching A and the output is the object produced as an instance of B,
whereas during backward chaining, the input is either (a) the goal matching B and the output is
a sub-goal produced as an instance of A or, (b) an instance of B and the output is an
assumption, i.e. an instance of A whose confidence value is calculated exactly as for goals (see

below). Using instantiated states in the patterns of a model allows said model to operating on
(or producing) conjunctions of facts.

During backward chaining, if a goal matches the right-side pattern with an inverted target fact,
then the sub-goal target is also inverted.

When the left-side pattern of a model is a command, sub-goals built from this pattern are sent
to the I/O devices. The command sent shall be considered a request to the device rather than

an order. Devices have internal states that may be hidden from the system (the system would
not have models of some devices) and thus, the system shall be informed of the command that
was actually executed (if any) or of exceptions that were raised during the attempt to execute
the command. Either the devices themselves or user-defined programs shall a copy of the
command they actually executed back in the memory or, in case of failure, an exception.
Commands can only appear as the left-side pattern of a model. Goals on commands that
contain unbound values are not passed to the I/O devices: they are just lost.

Forward and backward chaining are performed concurrently, i.e. at any time a model may
produce a sub-goal and a prediction simultaneously.

The confidence values for goals and predictions are computed as follows:

Á The confidence value of a sub-goal is the product of the success rate of the
model and the confidence value of the input goal

Á The confidence value of a prediction is the product of the success rate of the
model and the confidence value of the input fact or of the predicted fact if the
input is a prediction.

Accordingly, the more models involved in a reduction (abduction or deduction) path, the lesser
the confidence of the final product (goal or prediction), assuming some models are not perfect
(e.g. their success rates are below 1). By reduction path we mean the set of models that, from
an initial input (goal or prediction), output objects that constitute inputs for other models in the
set.

The syntax of a model is:

(mdl [set - of - tpl - arguments] [set - of - patterns] [set - of - forward - guards] [set - of -

backward- guards] [set - of - ouput- groups] strength number - of - evidences success-

rate derivative - of - the- success- rate)

The five first members are defined exactly as for composite states. The strength
of a model is a number in {0,1} that indicates if the model has performed well,
consistently in the past. The so-called derivative of the success rate is actually
the success rate at the time of the former to last evidence. This value is
provided to control learning as it indicates the progression of the success rate.

When a model produces an output, the executive notifies this operation, using a reduction
marker (mk.rdx), (as in the case of programs) where the code member is set to the instantiated

model that produced the goal or prediction. The syntax of an instantiated model is:

(i mdl a- mdl [set - of - template - values] [set - of - values])

As for instantiated composite states, the values appear in the instantiated model in the same
order as their corresponding variables in the model. More over, the time redundancy is also
eliminated, as for composite states - in the case of models, the time in question is the time of
the matching of the left-side pattern.

Models can encode knowledge about other models, in other words, models can reuse and
control other models.

Reuse Reusing a model M0 in a model M1 means having M1 predict a fact when M0 outputs its

own prediction. The left-side pattern of M1 would then be encoded as a pattern on an instance
of M0 (imdl), in other words, M1 can be sketched as: imdl M0 Ą B (imdl stands for a fact
pointing to an imdl).

Replicode - Language Specification V2.0

32/104

During forward chaining, M1 reuses the prediction produced by M0 to trigger its own
predictions, in effect, adding its own prediction to M0ôs.

During backward chaining, M1 needs M0 to achieve its goal: assuming M0 is A Ą C, when M1
receives a goal b matching B, then the executive produces a sub-goal c matching C in M0.

Control To control M0 by M1 means that M1 allows or blocks the execution of M0 (for both

chaining modes). M1 can be sketched as: A Ą imdl M0, and another model M3 as: B Ą |imdl
M0 (|imdl stands for an anti-fact pointing to an imdl). M1 reads ñwhen some a matches A, then I
predict that if M0 predicts something, it will succeedò whereas M2 reads: ñwhen some b
matches B, then I predict that if M0 predicts something, it will failò. M2 is called a strong
requirement (because without M2, M0 will fail) and M1 is called a weak requirement (because
without M1, M0 may still succeed).

During forward chaining, M0 collects all predictions about its own success, from both its strong
and weak requirements. When M0 matches its input, it will output a prediction only if (a) there is
no requirements at all or, (b) there is only weak requirements and at least one has predicted the
success of M0 or, (c) there are only strong requirements and none of them has predicted
anything about M0 or, (d) there are both kinds of requirements, both having predicted, and one
prediction of success of M0 has higher a confidence than any other. Otherwise, chaining is not
allowed and M0 will not predict anything. in case chaining is not allowed, the executive runs M0
silently, i.e. it makes the prediction M0 would have made without injecting it: this allows the
executive monitoring the potential outcome of running M0 and thus check if the predictions of
the strong requirements were correct or not.

During backward chaining, M0 also collects all predictions about its own success as above
(actually, such predictions are collected continuously and discarded when the current time
leaves their time interval). When M0 matches its right-side pattern, the executive checks if
chaining is allowed, using the same rules as for forward chaining. If chaining is allowed, then
the backward guards are evaluated using the values stored in the instantiated model that
allowed chaining. This instantiated model (of M0) is the right-side term of a model that predicted

the success of M0 with greater confidence. Once the backward guards have been successfully
evaluated, M0 produces a sub-goal, as if there were no requirements.

Requirements are counted by the executive among the active models: when a model loses
activation, and if it was a requirement for some other model, then the executive will count one
less requirement for the latter model. Symmetrically, when a model being a requirement for
another one gains activation, then the executive will count one more requirement for the latter
model.

To illustrate the use of models, letôs consider the example of a simple motor control. Letôs
assume a command lift_hand taking two arguments, the hand and the distance the device shall
move. The following set of models and composite states encodes the consequences of lifting a
hand ï or, from the goal generation point of view,, encode a command generator for lifting a
hand:

M0:(mdl [p0:] []

 (fa ct (cmd lift_hand [a_hand: a_ distance :] :) t0: t0: ::)

 (fact (mk.val a_hand position p1 : ::) t1: t1: ::)

[] ; forward guards

 t1:(+ t0 SAMPLING_PERIOD)

 p1:(+ p 0 a_distance)

 [] ; backward guards

 a_distance: (- p1 p0)

 t0:(- t1 SAMPLING_PERIOD)

[s tdin])

where SAMPLING_PERIOD is a user-defined constant. Notice the assignment

operations in the forward guard, for example, during forward chaining, t 1 will be

set to t0+SAMPLING_PERIOD.

S:(cst |[] []

(fact (mk.val an_object: essence ΓhandΔ ::) t: t: ::)

Replicode - Language Specification V2.0

33/104

(fact (mk.val an_onject: position p0:) t: t: ::)

|[] ; forward guards

|[]; backward guards

[stdin])

M1:(mdl []

 (fact (icst S |[] [a_hand: p0:] ::) t2: t2: ::)

 (fact (imdl M0 [p0] [a_hand: a_distance : t1: p1:] ::) t0: t0 : ::)

[]

 t0:(+ t2 SOME_CONSTANT)

| []

[stdin])

where SOME_CONSTANT is user-supplied.

Forward chaining: at T0, say the right hand is at a position P0, S is instantiated
(values: the_right_hand and P0); M1 predicts the success of M0 with the template
value P0 and the values the_right_hand and a_distance: (the latter unbound). In
turn, when M0 matches a command, chaining is allowed (thanks to the prediction
from M1), then M0 evaluates its forward guards and predicts the next position of
the hand.

Backward chaining: letôs assume a goal G0 trying to get the right hand at a
position P1 at time T1. The right-side pattern of M0 matches G0, but as M0 is
controlled by some requirements (here, M1), the system must ensure that there is
a prediction of success for M0. This produces a sub-goal G1, targetting an
instance of S with the values the_right_hand and an unbound value for p0.
Assume now that the right hand is at a position P0; S will be instantiated with the
values the_right_hand and P0; M1 will predict the success of M0, with P0 as the
template value, and the values the_right_hand and undefined values for
a_distance and p1. At this point, chaining is allowed for M0: the backward guards
are evaluated, which produces another sub-goal G2, actually an instance of the
command, with the parameters the_right_hand and P1-P0.

Each group a model live in must be paired with another group and is actually active in either
one or the other. The first group is called the primary group and it is where a model runs
according to the rules mentioned above. Shall a model loose activation in the primary group,
then it is activated in the secondary group. The reason for this is as follows: a model loses
activation when its success rate goes below the activation threshold of the primary group, and
thus will never execute again, therefore there would be no chance for the model to getter better
a success rate. In the secondary group, no abduction is performed and only successes are
monitored; also, predictions are not injected in the secondary group (they are still silently
produced for model rating purposes). When a model in the secondary group gets its activation
value above the activation threshold of the primary group, it is deactivated in the secondary
group and gets back to the regular reduction mode allowed in the primary group. Shall a model
in the secondary group loose activation in that very group, it is deleted permanently, excepted
for strong models which live forever: strong models starting to misbehave indicate a context
change, that is, the environment has entered a state where what was predictable by known
methods is not so anymore, but this does not mean the models are bad ï they are just out of
the context where they use to make sense.

Replicode defines a construct for pairing groups; its syntax is:

(mk.grp_pair primary - group secondary- group)

Notice that such a marker shall not be injected in any of the two groups to avoid

circular dependencies
8
.

8
 group -> view -> marker -> group, where -> denotes a reference counting smart pointer.

Replicode - Language Specification V2.0

34/104

Figure 8 ï Paired Groups Hosting a Model

A model (grey circle) is projected on two groups: these are paired using a

mk.grp_pair object (white circle). A model can live in an arbitrary number of such

paired groups.

Composite states live only in the primary group.

Goals pursued by the system are injected by models and states only in the primary group.
Predictions are injected in the output groups defined for states and models.

The method for calculating the success rates brings some undesirable inertia to the activation
of models. Consider for example the case of a model having succeeded for a long time: it will
take a large amount of failures to bring its success rate below the activation threshold of the
primary group. In other words, good models that start performing badly remain active for too
long, and then keep injecting wrong predictions unnecessarily. The executive take two control
parameters - mdl_inertia_sr_thr and mdl_inertia_cnt_thr : the first parameter defines a threshold

on the success rate and the second, a threshold on the number of evidences. When a model
reaches both thresholds (good success rate over a large number of evidences) then the model
is marked as being strong and the number of evidences is trimmed down to 1 if the number of
evidence was exactly the same as the threshold, or is reduced by the value of the threshold
otherwise. In addition, the success rate of such a model is reset to 1.

6.4 Pattern Extraction

This section describes how models and states are induced from input data. Acquiring new
knowledge contributes to learning alongside model revision (the latter has been described
earlier: it is the maintenance of the success rates of the models and possibly their deletion).

Replicode offers three ways of acquiring models/states, by means of three different
components, called Targeted Pattern Extractors (TPX),that attempt to model causal
relationships between inputs and their target. Targets are different with regards to the type of
TPX:

Á GTPX, Goal Targeted Pattern Extractor: a GTPX is instantiated each time a goal is
produced, and the target is the success of said goal;

Á PTPX, Prediction Targeted Pattern Extractor: a PTPX is instantiated each time a
prediction is produced and the target is the failure of said prediction;

Á CTPX, Change Targeted Pattern Extractor: a CTPX is instantiated for each known
state and the target is a change of said state.

TPX operate on time-bounded buffers of inputs ï a system parameter defines a time horizon
(TPX_THZ) for limiting the size of the buffers (inputs older than now-TPX_THZ are
discarded).Upon observing itôs a target, a TPX trims its buffer down then proceeds (if possible)
to build new models and states. We now describe these procedures in details for each kind of
TPX.

GTPX:

Trimming down the buffer:

1 if one input is a trace of the execution of one model that solved the goal, abort ï a
trace of model execution is called a reduction marker and contains (a) a reference to

primary secondary

Replicode - Language Specification V2.0

35/104

the executed model, (b) a reference to its input and (c) a reference to its production.
This step ensures that no two identical models can be produced;

2 remove any inputs that triggered any model execution ï model execution is traced
solely by imdl constructs;

3 remove any inputs that were assembled in composite states ï only high-level state
instances will be traced in the form of icst constructs.

N.B.: the input buffer is composed of inputs satisfying the time requirements and
sharing at least one value with the goal.

Induction:

1 starting from the younger input, if a plausible cause C is found, scan for an icst
containing C; if none, scan for synchronous inputs and build a new composite state.
Remove the inputs from which the new state was build.

2 use C (no state found) or the identified icst as the left side of a new model, the goal as
the right side. Build guards.

3 goto 1 until the buffer is empty.

PTPX:
Trimming down the buffer:

1 if one input is a trace of the execution of one model that predicted the failure of the
prediction, abort ï a trace of model execution is called a reduction marker and
contains (a) a reference to the executed model, (b) a reference to its input and (c) a
reference to its production. This step ensures that no two identical models can be
produced;

2 remove any inputs that triggered any model execution ï model execution is traced
solely by imdl constructs;

3 remove any inputs that were assembled in composite states ï only high-level state
instances will be traced in the form of icst constructs.

N.B.: the input buffer is composed of inputs satisfying the time requirements and sharing at
least one value with the prediction.

Induction:

1 starting from the younger input, if a plausible cause C is found, scan for an icst
containing C; if none, scan for synchronous inputs and build a new composite state.
Remove the inputs from which the new state was build.

2 use C (no state found) or the identified icst as the left side of a new model, the
instance of the model that failed to predict as the right side. Build guards. Notice that the
new model is a strong requirement on the model that failed to predict correctly.

3 goto 1 until the buffer is empty.

CTPX:
Triiming down the buffer:

1 if one input is the trace of the execution of a model that predicted the change, abort.
2 if the state does not change, abort. A state is deemed not to change when one input
matches it at time t0+SAMPLING_PERIOD, where t0 is the time of the last injection of
the state.

N.B.: the input buffer of a CTPX is the union of the buffers of all the currently active
GTPX and PTPX.

Induction:

1 starting from the younger input, if a plausible cause C is found, scan for iS containing
C; if none, scan for synchronous inputs and build a composite state. Remove the

Replicode - Language Specification V2.0

36/104

inputs from which the new state was build.
2 use C (no state found) or the identified icst as the left side of a new model, the new
state as the right side. Build guards.
3 build a weak requirement on the new model, left side: the state that changed. Notice
that this induction procedure actually buils two new models,the first capturing the
cause of the new value of the state, the second being a weak requirement on the first.
These two models actually encode a state transition.
4 goto 1 until the buffer is empty.

To control model production Replicode maintains a model base, composed of two lists:
Á Black List: models that failed are stored in the black list: TPX cannot inject new models

that are already in the list. This prevents producing models that have proven to be
inadequate.

Á White List: strong models (good success rate, numerous evidence count) are stored in
the white list: TPX cannot inject new models that are already in the list. This prevents
producing new models identical to exisitng ones that are not active but still good
performers.

6.5 Simulation
Deriving a sub-goal from a goal (abduction) can have the following undesirable consequences:
(a) the sub-goal can, in fine , have impacts on the environment that would cause a failure of the
initial goal (the goal would then be self-defeating) or, (b) the impacts of the sub-goal on the
environment would cause another goal to fail.

Moreover, as discussed in the previous section, weak requirement are actually alternatives for
reaching the goal of the model they control and the system shall select the most appropriate
alternative instead of pursuing them all.

For all of these reasons, the executive simulates the impacts of sub-goals before committing to
them. Simulation is a process hidden to the system itself, i.e. the system has no knowledge
about what is being simulated and about the results. It is a strictly internal process of the
executive.

Simulation is a process that performs for a limited time before committing to sub-goals. the
executive defines three parameters ï min_sim_time_horizon , max_sim_time_horizon and

sim_time_horizon ï that control the time allowance for simulation. The simulation time horizon is

computed as a percentage of: the goal deadline minus the current time, clamped by the min
and max values. In a nutshell, simulation is performed as a time-bound succession of abduction
steps followed by simulated deductions:

Abduction Step 1 For a given goal the system already committed to (thereafter called an

actual goal as opposed to a simulated goal), several models induce sub-goals as described in
the previous section. Each of these sub-goals is tagged (internally) with a simulation object that
refers to the actual goal.

Abduction Step 2 For each simulated goal, models induce more sub-goals: these are tagged

(internally) with a solution object that refers to the simulation objects produced in the previous
step.

Abduction Step 3 For each solution goal, models induce furthermore and the resulting sub-

goals are tagged with the same solution objects produced in the previous step.

Abduction Step 4 + Each subsequent step performs as step 3.

Abduction steps end at sim_time_horizon/2 . From then on, simulated predictions of the deepest

sub-goal targets are injected (with a confidence value of 1). The deepest goals are the goals for
which further abduction steps were prevented. The simulated deduction is performed as for
regular predictions, using forward chaining and stops at sim_time_horizon , counting from the

beginning of the simulation.

After sim_time_horizon , the system stops the simulation and makes a decision about which sub-

goals to actually pursue, based on the outcome of the simulated predictions.

Notice that simulated goals and predictions are injected only in the primary group.

The rest of this section describes in details how the simulation is performed, and for clarity we
will examine three cases: (a) a set of models containing no commands, with no requirements,
(b) the same set where a model contains a command and, (c) the same set (no commands)
where a model is controlled by some requirements.

Replicode - Language Specification V2.0

37/104

Case 1 ï no command, no requirement

Figure 9 ï Abduction Steps (no command, no requirement)

Key: models are represented by boxes containing patterns, noted in capital
letters. Goals are represented as gi: target/type, where a target matching a
pattern X is written x.

See text for details.

As mentioned in the simulation overview, the sub-goals produced from g2 to g5 will be marked
by the exact same solution marks as for g2 to g5.

When the abduction steps stop, predictions are simulated, i.e. they are marked with the solution
markers of the goals that could not be simulated (the deepest goals).

each actual goal is monitored by the executive and, at the end of the simulation, a decision is
made depending on the simulated predictions. The predictions of interest are the predictions of
success or failure of any goal, simulated or not; for g0, only the predictions holding a solution

mark that refers to the simulation mark that in turn refer to g0 will be considered.

The objective of the decision is to choose the sub-goals to pursue in order to achieve g0. In the
case depicted above success for g0 requires pursuing both g4 and g5, and the best of g2 and
g3, if no conflicts are anticipated. Notice that the system will not commit to g1, but to g1ôs sub-
goals instead.

Conflicts are identified by simulated predictions of the failure of another goal; decision is
performed as follows:

Á if a simulation causes the failure of an actual goal, the simulation and its solutions are
discarded;

Á if a simulation causes the failure of a simulated goal, say g, the simulation is discarded if
g is more important than g0, kept otherwise. The importance of a goal is a value,
computed internally, defined as the product of the confidence of the goal, a unction of
the time left between the current time and the ñbeforeò deadline of the goal and the
highest confidence of the predictions that warned about the success or failure of the
goal.

Á if after the evaluation of conflicts, there are still some simulations, then the executive
commits to all the solutions that are required (like g4 and g5 in the picture above) and to
the best of the others (e.g. g2 or g3), chosen according to their importance value.

Á if there is no simulation left, then the executive will start another simulation.

Case 2 ï one command, no requirement

A E

B E

C |E

D |E

E F g0:f /actual

g1: e/simulation

g2: a/solution

g3: b/solution

g4: |c/solution

g5: |d/solution

step 1 step 3 step 2

Replicode - Language Specification V2.0

38/104

Figure 10 ï Abduction Path (one command, no requirement)

This case is similar to the one presented in figure 9 above, except that A is now
the pattern of a command (and also, other solutions have been omitted for
clarity).

See text for details.

Inducing from a command goal cannot yield sub-goals, as commands constitute the interface
between the system and its devices (and through these, to the environment). Consequently,
when a goal matches the right-side pattern of a model containing a command, the simulation
stops as if half the time allowance would have spent.

At the end of the simulation, assuming the simulation g1 is chosen, the system commits to the
command, and said command is sent to the devices.

Shall the command be patterned after E instead of A, then upon matching of g0, the simulation
returns immediately and the system will commit to g2 ï assuming again a positive conflict
resolution.

Case 3 ï no command, some requirements

Figure 11 ï Abduction Path (no command, some requirements)

Key: iM denotes (fact (imdl M arguments) é), |imdl stands for (|fact (imdl M
arguments) é).

See text for details.

If for model M, there are some requirements and the chaining is allowed, then the executive
proceeds as in Case 1. Otherwise, it will simulate a goal for allowing chaining, i.e. g1, and will
perform the simulation as in Case 1. In case of a positive conflict resolution, the executive will
commit to both g4 and g5, and to the best of g1 and g2. At the next simulation period, the
executive will induce again from g0 until chaining is allowed, or g0 fails. If at some point
chaining is allowed, then the executive will perform as in Case 1.

There is a particular case that is handled specifically: assume g0 is actually gKf instead of g:f.
Then if chaining is not allowed, then there is no chances that M will execute and thus will not
produce f, which is the goal. In that case, the executive will not simulate g1 at all, and shall g0

A E

E F g0:f /actu al

g1: e/simulation

g2: a/solution

step 1 end of

abduction

step 2

A iM

B iM

C |iM

E F g0:f /actual

g1: iM/simulation

g2: a/solution

g3: b/solution

g4: |c/solution

g5: |d/solution

step 1 step 3 step 2

D |iM

M

Replicode - Language Specification V2.0

39/104

be a simulation or a solution itself, then the abduction would stop (as if the time allowance was
spent).

General Rules

These rules apply at the end of each simulation time, for a given goal:

Á in case conflicting predictions have been received during the simulation time, the one
with the highest confidence is retained, the others discarded;

Á when an actual goal fails, all its sub-goals and simulations are terminated, then a new
simulation starts;

Á for an actual goal that has already committed to sub-goals, nothing particular is
performed if no prediction of failure have been received during the simulation time.
Otherwise, the sub-goals and their simulations are terminated and a new simulation
starts;

Á when, for an actual goal that has not committed to sub-goals yet (i.e. these are being
simulated), a prediction of success is received, then the simulations are terminated; the
rationale is that for such a goal, success can be predicted without having to commit to
anything;

Á for an actual goal that has not committed yet, if no simulation can be chosen (either
none have been received or the one received have been discarded), a new one is
started;

6.6 Drives
Drives are goals whose target is not observable. Drives constitute the very core of a system ï
they can be considered ñinnateò goals. A system shall be designed to learn how to solve its own
drives, most typically, with the help of user-defined models that give it some headways.

Each drives is to be injected periodically in a system by a set of programs reacting upon the
success or failure of the previous issue of the drive (letôs call these programs ñdrive injectorsò).
To allow the control of the activation of these drives, drives injectors are isolated in one specific
group, defined by the application. Models that take a drive as their right-hand side are called
top-level models and must specify the drives group as the last parameter in their output group
set.

Since drives are not observable, top-level models do not issue predictions: instead they inject
the outcome of their left-hand side goal (sub-goals of their drive) into the drives group, thus
allowing drive injectors to perform (for example, re-inject the drive after a failure, or delay its re-
injection after a success).

There can exist only one top-level model per drive, and no requirements (weak or strong) are
allowed to control top-level models.

Replicode - Language Specification V2.0

40/104

7 S elf -Monitoring of Time
Resources

The executive periodically assesses its available time resources (i.e. its time-wise execution
performance). A parameter ï perf_sampling_period - defines the sampling period of the

monitoring upon which performance objects are injected in the memory. These objects are of
the class perf (see Annex 1 for details) and carry four numbers:

Á rj_ltcy : reduction jobs latency;

Á d_rj_ltcy : reduction job latency at the last sampling time;

Á tj_ltcy : time job latency;

Á d_tj_ltcy : time job latency at the last sampling time.

All the tasks performed by the executive fall into two categories: immediate reduction jobs and
time-delayed reduction jobs (i.e. timer-locked processing). Each kind of jobs is injected into a
dedicated pipeline and picked up by two separate pools of threads. The measurements carried
by the perf objects mean:

Á reduction job latency: the delay between the injection time of a job in the pipeline and the
time it was processed by a thread, averaged over the sampling period: the lower the better.

Á time job latency: the delay between the time the thread that picked up the job had to wait,
averaged over the sampling period: the higher the better.

The courses of action that can be taken to bring the system back within an acceptable
operational envelope are:

Á raise the primary/secondary group activation/saliency thresholds: fewer models will be
executed, goals and predictions will flow for a reduced range (as their saliency will get under
the threshold more rapidly).

Á reduce the simulation time allowance;

Á raise the activation threshold in the drives group.

Replicode - Language Specification V2.0

41/104

8 Distributed Computation
This section describes how computation is distributed over a cluster of computing nodes.

Inter-node communication is not a transparent operation carried out by the executive. Instead,
programs have to explicitly transmit code to remote nodes. This is the role of the ejection
function (eje) defined by the executive: it admits four arguments, (a) the object to be ejected,

(b) a view (see below), (c) the destination node and (d) a selector indicating the group in the
destination node where the object shall be projected (see below).

 In addition to root , Replicode defines two other default groups to facilitate communications:

Á stdin : the standard input group. When some program on a node ejects an

object to another node, the object can be projected on the stdin of the
destination node, with the view passed as the second argument to eje .

Á stdout : the standard output group. If code on a node n1 needs to detect patterns

of events occurring on another node n2, then the way to proceed is to send to n2

some programs able to perform such detection and when successful, to send
the productions to n1. Such deported detectors are actually proxies of programs

from n2 sent to n1. The standard output is the group where proxies shall be

ejected to.

The last argument of the eje function selects whether the ejected object shall land on stdin or on

stdout in the destination node. For communication purposes, stdin and stdout are the only

groups that are guaranteed to exist at any time (root is private to a node).

When an object is received by a node, its view contains an injection time representing the
reception time on the node.

When an object is ejected to a remote node, neither its markers nor its views are transmitted. To
be transmitted, markers have to be explicitly ejected. However, if the object contains explicit
references to other objects, these will be transmitted. Groups cannot be transmitted.

Objects sent by devices to nodes hosting an instance of the executive always land in stdin .

Figure 12 ï Structure of a Node

The nodeôs three default groups - root , stdin and stdout ï are always present in

memory. Other groups have to be projected (directly like g1 or indirectly, like g2)

onto at least one of the default groups.

Remote nodes send detectors to std out , and other objects to stdin . Devices

always send data to stdin . Once received, objects can be injected freely in any

group on the node, by programs in said node.

Any program in the node can send objects to devices and remote nodes,
regardless of its location in the node (it does not have to be projected on any of
the default groups to do so).

The objects flow from left (stdin) to right (std out) as instrumented by group g3 ï it

is assumed here that stdin is visible in g3 and g3 in turn, is visible in std out . In

stdin stdout

root

g1

g2

proxies from
remote nodes

objects from
remote nodes
and devices

g3

objects sent
to remote
nodes by
proxies

Replicode - Language Specification V2.0

42/104

other words, there must exist a reduction path from stdin to std out .

9 References

Thórisson, K. R. (2012). A New Constructivist AI: From Manual Construction to Self-
Constructive Systems. In P. Wang and B. Goertzel (eds.), Theoretical Foundations of Artificial
General Intelligence. Atlantis Thinking Machines, 4:145-171.

Thórisson, K. R. & E. Nivel (2009a). Holistic Intelligence: Transversal Skills and Current
Methodologies. Proc. of the Second Conference on Artificial General Intelligence, 220-221.
Arlington, VA, USA, March 6-9.

Thórisson, K. R. & Nivel, E. (2009b). Achieving Artificial General Intelligence Through Peewee
Granularity. Proc. of the Second Conference on Artificial General Intelligence, 222-223.
Arlington, VA, USA, March 6-9.

Nivel, E. & K. R. Thórisson (2009). Self-Programming: Operationalizing Autonomy. Proc. of the
Second Conference on Artificial General Intelligence, 150-155. Arlington, VA, USA, March 6-9.

Replicode - Language Specification V2.0

43/104

Annex 1 ð Replicode
Specification

1 Over view
This annex defines the syntax and semantics of Replicode language constructs. Annex 2
specifies the semantics of the executive.

Code in Replicode is written using seven categories of syntactic elements:

Á Atoms: constants, object class members, labels, variables, references, numbers,

and numerical identifiers.

Á Separators: comments, separators in sets and expressions, line continuation.

Á Sets: sets of atoms and/or sets and/or expressions.

Á Expressions: an operator followed by operands, or an object class followed by

constructs that implement its structure. Examples of expressions are (respectively),
(+ a b) , an expression that computes the sum of two variables a and b, and (mk.rdx

a [b c d] [e f] 1) , an expression denoting an object of class mk.rdx followed by

one object a, a set of three objects b, c, d, a set of two objects e, f , and a value, 1.

(meaning the instantiated program a has reduced the objects b, c and d to

produce the new objects e and f).

Á Directives: instructions to specify how the compiler shall handle code. Directives

are not subject to rewriting, they are commands defined by the pre-processor,
interpreted at compilation time, not at runtime. The pre-processor is similar to the
C++ pre-processor.

Á Operators: symbols defining operations to be performed on one or more symbols;

an operator followed by such symbols (operands) constitutes an expression.
Operators are implemented in the executive and their semantics cannot be
modified at runtime. The list of available operators can be extended, i.e. operators
can be user-defined. Operators fail gracefully when applied to ill-formed or
unsuitable operands.

Á Object Classes: symbols defining static types. A class defines a specific structure

and its (axiomatic) semantics. For example, programs, models, functions, groups,
markers are object classes. Objects classes can be user-defined.

Operators and objects types are represented internally (in r-code) by numerical opcodes.
However, for the sake of readability, when these elements are built-in the executive, they are
identified by tri- /tetragrams and/or by alternate non numerical symbols (aliases).

2 Syntax
2.1 Atoms

Symbol Description

nil constant meaning ñundefined expressionò.

[] opcode of sets.

|[] constant identifying an empty set. N.B.: [] is illegal, and [nil] is a

set containing one element.

|nb constant meaning ñundefined numberò.

|u s constant meaning ñundefined timeò.

|did constant meaning ñundefined device identifierò.

|f id constant meaning ñundefined device function identifierò.

|n id constant meaning ñundefined node identifierò.

Replicode - Language Specification V2.0

44/104

|bl constant meaning ñundefined Boolean valueò.

|st constant meaning ñundefined character stringò.

forever time constant (infinite time).

true Boolean constant.

false Boolean constant.

a-name: an-expression declaration of a label identifying the expression. a-name is an

alphanumerical identifier. Notice the absence of a separator before
and after : .

a-name: declaration of a named variable inside a programôs code. a-name is

 an alphanumerical identifier.

a-name#a-class-name: declaration of a variable inside a programôs code with the indication

 of a cast to the specified class. This allows referencing members of
 the structure that valuates the variable, according to the definition of
 the class into which the variable is cast.

a-name reference to the value identified by a label or by a named variable. a-
name is an alphanumerical identifier.

: declaration of an unnamed variable (wildcard) inside a pattern.

:: declaration of an unnamed variable inside a pattern. It stands for the

tail of an expression starting at the position of :: in the pattern.

a-floating-point-number a floating point number on 31 bits (see Annex 3 for details); also used

to represent integers (lesser than or equal to 2
24

). Whenever a class
member or an operator argument is expected to be an integral value
and is valuated by a non-integral value, said value is converted to the
nearest lower integral value.

a-floating-point-number|a-floating-point-number an imprecise number. The left-hand number is

the center of an interval, the right-hand number represents half the
size of the interval: a|b defines the interval [a-b, a+b].

a-timestamp an unsigned integer on 64 bits (in microseconds since

 01/01/1970), post-fixed with ñusò.

a-timestamp|a-timestamp an imprecise time value, post-fixed with ñusò. a|bus defines the time

 interval [a-b, a+b], in microseconds.

ña-character-stringò character string (8 bits per character).

this reference to an instantiated program in the code of the program

(similar to C++).

this. a-member reference to a value identified by the instantiated programsôs member

a-member in the code of the program itself.

a-name. a-member reference to a value identified by the member a-member of an object

or a set referred to by the variable a-name ï in other word, direct
member access. Daisy chaining of member access is permitted (e.g.
a-name. a-member. a-member).

a-member an alphanumerical identifier indexing a member in an objectôs

structure.

opcode an operator or an object/marker class.

identifier an integral unsigned value identifying a device or a device function.

Such values are typically defined as macros mapping symbols into r-
code constructs.

index an integral unsigned value identifying an index in a set viewed as an

array. This is meant to access members in sets like sets of template
arguments which are actually arrays (see the at operator section 4.1

below).

Replicode is case-sensitive.

N.B.: | is not an operator: it is a mere character in some symbols.

Atoms of types named variable, label and member are literals encoded as null-terminated
character strings of unlimited length, obeying the following rules:

Replicode - Language Specification V2.0

45/104

- each character is in the US-ASCII subset: A, é, Z, a, é, z, 0, é, 9, _

- the first character cannot be a digit or an underscore: the latter is reserved for functions of the
executive and label/variable names decoded from dynamically generated code (see section 2.2
in Annex 3).

- the string cannot be equal to any of the symbols denoting atoms, built-in operators, built-in
object types, built-in device functions, and built-in macros.

Atoms of type character string are limited in length (1020 characters) and can be composed of
any character.

Atoms of types floating point number and timestamp are literals which follow the syntactic rules
defined by the C++03 standard.

2.2 Separators
Syntax Description

blank-space separator between atoms, expressions, sets.

carriage-return separator between atoms, expressions, sets. The actual

character is OS dependent (e.g. LF on Linux).

; comment, extending to rest of the line.

blank-space.. carriage-return line continuation. Can only appear in the commented part of

a line, not within code.

Tab characters are illegal (see section 2.5 below).

In the syntax described thereafter, blank spaces and carriage returns denote separators
between atoms, expressions, sets and are used interchangeably.

2.3 Sets

Syntax Description

[list-of-elements] a set.

list-of-elements list of atoms and/or sets and/or of expressions, separated by

exactly one separator from each other.

2.4 Expressions

Syntax Description

(opcode list-of-elements) an expression. N.B.: parentheses are useless since the arity

of the opcode is known, but are nevertheless part of the
language for improved readability ï they are not optional.

list-of-elements list of atoms and/or sets and/or of expressions separated by

exactly one separator from each other.

2.5 Code Formatting
To limit the infestation of code by parentheses, Replicode allows using a carriage return followed
by an indent (a fixed number of spaces) instead of an opening parenthesis, and a carriage
return followed by a back-indent instead of a closing one. Thus,

carriage-return indent list-of-elements carriage-return back-indent

is equivalent to

(list-of-elements)

This formatting style can be mixed with parentheses at will, provided that, when made explicit,
parentheses are matched explicitly.

In a similar way, [] (set opcode) followed by a carriage return and an indent opens a set, and a

carriage return and back-indent closes it (see examples below).

Tab characters (ó\tô) are illegal - when using a text editor, one shall set it to convert tab
characters into 3 spaces.

Replicode - Language Specification V2.0

46/104

Examples:

(opcode arg1 arg2 arg3)

can be written:

(opcode arg1 arg2

arg3)

or:

(opcode arg1

arg2

arg3)

or:

(opcode

arg1

arg2

arg3)

or:

 opcode arg1 arg2

; notice the mandatory carriage return + back indent just before this .. comment.

(opcode1 arg1 (opcode2 arg4 arg5) arg3)

can be written:

(opcode1 arg1

(opcode2 arg4 arg5)

arg3)

or:

(opcode1 arg1

 opcode2 arg4 arg5

arg3)

or:

(opcode1 arg1

 opcode2

 arg4

 arg5

arg3)

or:

(opcode1

arg1

 opcode2

 arg4

 arg5

arg3)

(opcode1 arg1 [obj1 obj2 obj3] arg2)

can be written:

 opcode1 arg1

 [obj1 obj2 obj3]

 arg2

; mandatory carriage return + back indent just before this comment.

or:

 opcode1 arg1 [

 obj1

 obj2

 obj3

]

 arg2

; mandatory carriage return + back indent just before this comment.

Replicode - Language Specification V2.0

47/104

or:

 opcode1 arg1

 []

 obj1

 obj2

 obj3

 arg2

; mandatory carriage return + back indent just before this comm ent.

or:

 opcode1 arg1

 [

 obj1

 obj2

 obj3

]

 arg2

; mandatory carriage return + back indent just before this comment.

or:

 opcode1 arg1 []

 obj1

 obj2

 obj3

 arg2

; mandatory carriage return + back indent just before thi s comment.

or:

 opcode1 arg1 [

 obj1

 obj2

 obj3

]

 arg3

; mandatory carriage return + back indent just before this comment.

(opcode1 arg1 [obj1 obj2 obj3])

can be written:

 opcode1 arg1

 [obj1 obj2 obj3]

; mandatory carriage return + bac k indent just before this comment.

or:

 opcode1 arg1

 []

 obj1

 obj2

 obj3

 ; mandatory carriage return + back indent just before this comment.

; mandatory carriage return + back indent just before this comment.

or:

 opcode1 arg1

 []

 obj1

 obj2

 obj3

; mandatory carriage return + 2 back indents just before this comment.

or:

 opcode1 arg1 []

 obj1

 obj2

Replicode - Language Specification V2.0

48/104

 obj3

 ; mandatory carriage return + back indents just before this comment.

; mandatory carriage return + back indents just before this comment.

or:

 opcode1 arg1 []

 obj1

 obj2

 obj3

; mandatory carriage return + 2 back indents just before this comment.

(opcode1 arg1 (opcode2 arg2 [obj1 obj2]) arg3)

can be written:

 opcode1 arg1

 opcode2 arg2 []

 obj1

 obj2

 arg3; notice the 2 back indents before arg3.

; mandatory carriage return + back indent just before this comment.

2.6 Pre -processor Directives

Element Syntax Description

Literal A null-terminated character string of
unlimited length, each character is in
the US-ASCII subset: A, é, Z, a, é, z,
0, é, 9, _, |.

The | character is allowed

only by explicit mention. In
such cases, it must appear
once and be the first
character of the literal.

Additional rules apply to
specific literals, depending on
their semantics.

Counter directive !counter counter-name initial-value Defines a counter that will be
post-incremented each time it
referenced, i.e. each time a
line containing its name is
evaluated by the pre-
processor (except when used
as an initial value).

Counters are encoded on 16
bits.

counter-name A literal starting with two underscores. A counter name is replaced
by its value in floating point
format (even if it represents
an integer).

initial-value An integer (>=0) or a counter name. If the initial value is given as
the name of an existing
counter, said counter is not
incremented.

Macro directive !d ef macro-name macro-replacement Defines a macro identified by
the literal macro-name (like
#define in C++).

macro-name A literal, possibly starting with | .

Macro-expression
directive

!d ef macro-expression macro-

replacement

Defines a macro expression
(like #define in C++ when a

macro has arguments).

Replicode - Language Specification V2.0

49/104

macro-expression (macro-name list-of-variables)

variable : variable-name

variable-name A literal.

macro-
replacement

An expression.

 A set.

 An atom.

 a-development

development { list-of-elements}

element An expression.

 A set.

 An atom.

 A macro name.

 An instantiated macro expression.

 A counter name.

Instantiated macro
expression

(macro-name list-of-elements) When macro-name is the
name of a macro expression,
the code (macro-name list-of-

elements) is replaced by the

replacement defined in the
macro expression, where the
variables are replaced by the
corresponding actual
arguments.

Undefine directive !u ndef a-name Un-defines a macro, a
counter or a macro
expression (like #undef in

C++).

a-name A macro name.

 A counter name.

Positive
precondition
directive

! ifdef a-name

list-of-directives

! else

list-of-directives

! endif

Condition on the existence of
a macro, a macro
expression, or a counter (like
#ifdef #else #endif in C++).

The else part is optional.

Negative
precondition
directive

! ifundef a-name

list-of-directives

! else

list-of-directives

! endif

Condition on the absence of
a macro, a macro
expression, or a counter (like
#ifndef #else #endif in C++).

The else part is optional.

Class directive !class (class-name list-of-member-

declaration)

Exposes the structure of an
object class. This directive
define the identifiers of the
members of a given class, to
be used as direct references
to parts of an object, instead
of declaring variables on said
object in a pattern. This

Replicode - Language Specification V2.0

50/104

refers to the ability to encode
atoms like an-object. a-

member-name. See section
4.2.1 of this Annex for details.

class-name A literal.

 a-literal[] Defines a class having the
structure of a set.

member-
declaration

member-name: type

 {list-of-member-declarations} Only allowed to instantiate a
variable in a template class.

 : ~ A class featuring members
declared as ~ is a class
template. See section 4.2.1
of this Annex for details.

 nil Only allowed in class
template instantiations. See
section 4.2.1 of this Annex for
details.

member-name A literal.

type nb Number.

 us Timestamp.

 bl Boolean value.

 sid Group identifier.

 fid Device function identifier.

 did Device identifier.

 [] Set.

 st Character string.

 A class name.

 [list-of-member-declarations] This type corresponds to an
anonymous class having the
structure of a set, and for
which members are declared.

 [iterative-member-declaration] This type corresponds to an
anonymous class having the
structure of a set, for which
all elements are of the
specified type.

 no-character A member declared this way
is of any possible type.

iterative-member-
declaration

: : type

Forward class
directive

!class class-name Declares the existence of a
class without defining its
structure. This allows
defining classes with circular
dependencies.

Class template
instantiation

(class-template list-of-member-

declarations)

Anonymous instantiation.
Expands into a list of
members where the variables
are replaced piece-wise by
the member declarations
passed as actual arguments.
No structure is created and

Replicode - Language Specification V2.0

51/104

the opcode of the class
template is therefore ignored.
See section 4.2.1 of this
Annex for details.

 member- name:(class-template list-of-

member-declarations)

Named instantiation. In
contrast with the method
above, this creates a sub-
structure led by the opcode
of the class template;
member substitution is
performed as in the case
above. See section 4.2.1 of
this Annex for details.

Operator directive !op (operator-name list-of-anonymous-

member-declarations): type

Exposes the signature of an
operator, i.e. the type of its
arguments and return value.

Overloads are not allowed.

anonymous-
member-
declaration

: type

Device function
directive

!dfn (function-name list-of-

anonymous-member-declarations)

Exposes the signature of a
device function.

Load directive !l oad file-locator Loads code from a file (like
#include in C++), in

Replicode for r-code form,
depending on file-locator.
Code loaded this way will be
loaded only once even if
several load directives

targeting the same file are
interpreted (behavior
equivalent to #pragma once in

C++).

file-locator A literal. Path to a file relative to the
directory where the file
containing the directive is
located. The syntax follows
the UNIX style. When the file
locator ends with the string
ñ.replicodeò, source code is
loaded, when it ends with
ñ.rcodeò, binary code is
loaded.

The type information associated with class members allow instantiating structures when these
members are assigned undefined values (see Annex 1, section 4.2.2). Return types are also
specified for operators for the sake of consistency with class member declarations; however,
they are not exploited at runtime in this current specification: no type checking is to be
performed at runtime. Nevertheless operator return types are used by the compiler to enforce

minimal static type checking (see Annex 3, section 2.1).

Replicode provides a set of predefined macro definitions gathered in a file named std.replicode ,

given in section 5 of this Annex. In particular, this file contains the definitions of device identifiers
and device function identifiers.

Replicode - Language Specification V2.0

52/104

2.7 Code Structure
Code is written in text streams and contains, in any order:

Á comments,

Á pre-processor directives,

Á definitions of objects: code and a set of views.

The usage of object definitions / macros must occur after the definitions ï except in the case of
forward class declarations.

The stream is parsed from top to bottom, left to right.

3 Built -in Constructs
3.1 Operators

Opcode Alias Description

now current time

equ = equality check.

neq <> non equality check.

gtr > greater than.

lsr < lesser than.

gte >= greater or equal.

lse <= lesser or equal.

add + addition.

sub - subtraction.

mul * multiplication.

div / division.

dis distance (norm of a difference) between two arguments.

ln Neperian logarithm.

exp elevation of e to a power.

log logarithm in base 10.

e10 elevation of 10 to a power.

syn \ keeps an expression or a set as raw syntax, i.e. prevents the

evaluation of the expression or of the elements of the set.

ins instantiation of a function, program, model or goal, i.e.

valuating the formal template arguments.

red scans a set for objects matching some patterns, returns a

set of productions.

rnd returns a pseudo-random number.

f vw finds a view on an object in a group.

Notice that operators are polymorphic, i.e. they are defined for any relevant argument types and
behave accordingly.

When users add new object types they also have to add new variants of the existing operators
bearing the same semantics (e.g. add for vectors, a variant of add for numbers, both having the

semantics of an addition).

3.2 Object Classes

Opcode Description

view view on an object. All views have the same core constituents (saliency,

resilience, etc.); in addition to these some views define some specific
parameters (for instantiated programs, models and group).

Replicode - Language Specification V2.0

53/104

pt n pattern. Patterns are expressions containing variables, followed by a set of

expressions encoding conditions on the variables. An expression will match if
it has the same structure as defined in the pattern and if all of the conditions
are met.

|p t n anti-pattern. Same structure as a pattern, but an expression will be

considering matching the anti-pattern if it would not match the pattern (i.e.
without the | alteration) ï not having the same structure or not satisfying at

least one condition.

pgm program.

| pgm anti-program. Behaves as a program, but reacts when no objects match the

pattern within a period of time.

ipgm instantiated program.

icpp_pgm instantiated C++ program.

grp group.

fact fact.

|fact negation (or absence) of a fact.

mdl model.

cst composite state.

imdl instantiated model.

icst instantiated composite state.

pred prediction.

goal goal.

success notification of the succes of a prediction or a goal.

icmd internal command.

cmd command to a device, i.e. invocation of a device function.

dev device.

nod computing node.

perf performance counter.

mk.class-name marker of class class-name.

There also exist so-called internal classes, not mentioned in the list above (see section 4.2 of
this Annex for details).

3.3 Devices and Device Functions

Device Function Description
 (alias)

exe the executive.

 inj injects an object in a group.

eje ejects an object into a remote node.

mod requests the modification of one of the various control

values and thresholds.

set requests the assignment of one of the various control values

and thresholds.

ld c loads code from a text input stream (Replicode form) or

from a binary input stream (r-code form).

swp swaps code to/from disk (in r-code form).

stop terminates the application.

N.B.: device and function identifiers are actually macro definitions.

Replicode - Language Specification V2.0

54/104

3.4 Marker Classes

Opcode Description

mk.rdx notification of a reduction.

mk.grp_pair indicates that two groups are paired for hosting models.

mk.low_sln notification of an object getting low saliency.

mk.high_sln notification of an object getting high saliency.

mk.low_act notification of an object getting low activation.

mk.high_act notification of an object getting high activation

mk.low_res notification of an object getting low resilience.

mk.sln_chg notification of an objectôs saliency change.

mk.act_chg notification of an objectôs activation change.

mk.new notification of the injection or visibility of an object for the first time.

3.5 Entities

The following entities are entities already injected in the system before user code is loaded.

Entity Description

self the application, i.e. the system as an actor in the world.

3.6 Group s
The following groups are groups already injected in the system before user code is loaded.

Group Description

root the standard root group.

stdin the standard input group.

stdout the standard output group.

4 Semantics
This section describes the semantics of the built-in constructs, i.e. the meaning of the elements
they are composed of.

The built-in functions are exposed by the executive and therefore their semantics is specified in
Annex 2.

4.1 Operators

In this section, operator aliases (when defined) are used in the syntactic definitions instead of
the opcodes. Operator signatures technically do not require member names. However for the
sake of clarity these have been added (in italics) in some of the descriptions that follow ï they
constitute a simple convenience, and are not part of the syntax. Some operators admit
variations on their argument types, i.e. are overloaded: even if formal overloads are not part of
the language, the signatures of such overloads are given when appropriate for readability.

When passed illegal arguments, operators return nil , |nb , |u s, |[] , |bl , or |st depending on their

return type.

_now

Signature

!op (_now): us

Description

Returns the current time.

Replicode - Language Specification V2.0

55/104

Return value

A timestamp representing the current time (in microseconds) since 01/01/1970.

equ

Signature

!op (= : :) : bl

Description

Checks for the equality of the two arguments. When the arguments are objects, equ compares

the content of said objects (it ignores views and markers).

Return value

In the case where none of the arguments are nil or undefined values, equ returns true if the two

arguments are equal, false otherwise.

equ returns true when both arguments are undefined values, regardless of their type.

equ returns true when one of the arguments is an undefined value, regardless of its type, and the

other is nil .

equ returns true when both arguments are nil .

neq

Signature

!op (<> : :): bl

Description

Checks for the inequality of the two arguments. When the arguments are objects, neq compares

the content of said objects (it ignores views and markers).

Return value

In the case where none of the arguments are nil or undefined values, neq returns true if the two

arguments are different, false otherwise.

neq behaves as the negation of equ in the case of arguments being nil or undefined values.

gtr

Signature

!op (> : :): bl

Description

Checks for the first argument being greater than the second.

Return value

true if the first argument is greater than the second, false otherwise.

l sr

Signature

!op (< : :): bl

Description

Checks for the first argument being lesser than the second.

Return value

true if the first argument is lesser than the second, false otherwise.

gte

Replicode - Language Specification V2.0

56/104

Signature

!op (>= : :): bl

Description

Checks for the first argument being greater than or equal to the second.

Return value

true if the first argument is greater than or equal to the second, false otherwise.

l se

Signature

!op (<= : :): bl

Description

Checks for the first argument being lesser than or equal to the second.

Return value

true if the first argument is lesser than or equal to the second, false otherwise.

add

Signature

!op (+ : :):

Description

Adds the two arguments.

Return value

Depending on the class of the arguments, a value representing the sum of the two arguments.

sub

Signature

!op (- : :):

Description

Subtract the second argument from the first.

Return value

Depending on the class of the arguments, a value representing the difference between the first
argument and the second.

mul

Signature

!op (* : :):

Description

Multiplies the two arguments.

Return value

Depending on the class of the arguments, a value representing the product of the two
arguments.

div

Signature

!op (/ : :):

Replicode - Language Specification V2.0

57/104

Description

Divides the first argument by the second.

Return value

Depending on the class of the arguments, a value representing the division of the first argument
by the second. If the latter is 0, |nb is returned.

dis

Signature

!op (dis : :):nb

Description

Computes the norm of the difference of two arguments.

Return value

A number representing the norm of the difference of two arguments.

l n

Signature

!op (ln :nb):nb

Description

Computes the Neperian logarithm of the argument.

Return value

A number representing the Neperian logarithm of the argument. If the argument is 0, |nil is

returned.

exp

Signature

!op (exp :nb):nb

Description

Computes the exponent of the argument.

Return value

A number representing the exponent of the argument.

l og

Signature

!op (log :nb):nb

Description

Computes the logarithm of the argument in base 10. If the argument is 0, |nil is returned.

Return value

A number representing the logarithm of the argument in base 10.

e10

Signature

!op (e10 :nb):nb

Description

Computes 10 at the power of the argument.

Replicode - Language Specification V2.0

58/104

Return value

A number representing 10 at the power of the argument.

syn

Signature

!op (\ :):

Description

Prevents the evaluation of the argument. If the argument is a set, the evaluation of its elements
is prevented. When a program/model injects an object defined like (\ (opcode operands)) then

what is instantiated in memory is (opcode operands) . This rule applies to any expressions and

atoms.

Return value

The argument in syntactic form.

ins

Signature

!op (ins object: arguments:[]):

Description

Instantiates an object featuring a template argument list with a list of actual arguments. The
latter comes as a set (with list semantics, i.e. the order of its elements matters).

Return value

An instantiated object (ipgm, ifun). The set of arguments in the instantiated object is filled with

the actual values of the template arguments. In case at least one of the actual arguments does
not match its corresponding pattern, ins returns nil , and thus the instantiation fails.

r ed

Signature

!op (red input-set: [] positive-section:[] negative-section:[]): []

positive-section is a set containing (a) a set of patterns and (b) a set of productions. When an
element of the input set matches at least one of the patterns in the positive section, all the
productions specified in the section are computed for this element and added to the result set. A
production is an expression that possibly refers to variables expressed in the patterns.

negative-section is a set containing (a) a set of patterns and (b) a set of productions. When an
element of the input set matches at least one of the patterns in the negative section but fail to
match at least one pattern in the positive section, all the productions specified in the section are

computed for this element and added to the result set. A production is an expression that
possibly refers to variables expressed in the patterns.

Description

Fills a set with productions computed as functions of the elements in the input set that match at
least one of the patterns in the positive section, and productions computed as functions of the
elements that do not match any patterns in the positive section but match at least one the
patterns in the negative section.

Patterns can as general as may be, for example: (ptn o: |[]) is valid in both sections.

Return value

A set whose elements result from the transformation of the elements in the input set by the
operations specified in the positive and negative section.

Shall the resulting contain commands, these will not be executed. To do so, the resulting set
shall be referred to in the production section of a program.

The resulting set may contain duplicates, depending on the patterns and associated
productions. Such duplicates are not eliminated.

Replicode - Language Specification V2.0

59/104

rnd

Signature

!op (rnd : nb): nb

Description

Computes a pseudo-random number in a given range.

Return value

A pseudo-random number within the specified range.

fvw

Signature

!op (fwv obj: grp: grp):

Description

Retrieves the view of the object obj in the group grp.

Return value

A view. If the object has not been projected on the specified group, nil is returned.

4.2 Object Classes

4.2.1 Structure

Object classes are structured as a concatenation of opcodes, members and classes.

Class structures ï pre-processor directives - allow referencing members in objects directly,
using the syntax an-object.a-member, instead of referring to variables declared in patterns
matching the objects. For example:

(ptn (ipgm code: ::) |[])

...

(... code ...)

can be written:

(ptn an_ipgm: (ipgm ::) |[])

...

(... an_ipgm.code ...)

where code ia a member of the class ipgm.

When the symbol an-object. a-member evaluates to an object, then it can be post-fixed with

another reference to members of said object in the form: an-object. a-member. a-member.

This alternate syntax can reduce the depth of the patterns involved ï in the example above, the
standard syntax needs to specify a pattern for the process, while in the alternate syntax the
process is accessed directly as a member of the process, and there is no need to specify a
pattern for the members of a process.

Member identifiers are alphanumerical and represented internally as integers, used as indexes
in the internal structure of the code (encoded in r-code, see Annex 3). For example, with:

!class (c1 m1 : m2:); m1=1 m2=2

the structure of an object of class c1 is:

(opcode-of-c1 m1 m2).

Different classes can expose members with identical names when they bear the same
semantics. Member identifiers are actually registered per class: in atoms like an-object.a-
member, the correct member identifier is selected according to the class of an-object. For
example, assuming:

Replicode - Language Specification V2.0

60/104

!class (c1 m1 : m2:); m1=1 m2=2

!class (c2 m3 : m1:); m3=1 m1=2

if o1 is an instance of class c1 and o2 an instance of class c2, then o1.m1 is interpreted

as o1.1 whereas o2.m1 is interpreted as o2.2.

There exists a notation for defining members of sets: (set-name[] member-list) . This does not

declare a particular class: it declares instead a set for which members are defined. This set
name can be referred to for instantiating class templates (see below). It is also possible to
define members on sets using an implicit set definition. For example:

!class (c1 m1 : m6:[m2: m3: m4:] m5:)

exposes a class c1 with three members: m1, a set known as m6 and m5. This is

equivalent to:

!class (a_set[] m2 : m3: m4:)

!class (c1 m1: m6:a_set m5:)

the sole difference being that a_set can be reused by other class structures.

Notice also that:

!c lass (c1 m1 : m2:[m1: m2: m3:] m3:)

is a valid expression ï no confusion is possible.

Classes can embed other classes, for example, assuming:

!class (c1 m1 : m2:)

!class (c2 m3 : m4:c1 m5:)

where m4 is an object of class c1, then the structure of an object of class c2 is

(opcode-of-c2 m3 m4 m5) and the structure of m4 is (opcode-of-c1 m1 m2).

Class structures allow variables in the member list. Such a variable must be valuated either by
an existing class structure, by a member or by a member list. Class structures containing
variables are actually class templates that need to be instantiated with actual arguments for the
variables they contain. When instantiated, the variables of template classes will be replaced by
the actual arguments, that is, either a member, a member list or the member list of a class. For
example, assuming:

!class (c1 m1 : m2:) ; m1=1 m2=2

!class (c2 m3 : :c m4:) ; m3=1 m4=2

!class (c3 (c2 m7:c1) m5:)

then c3 embeds an instantiation of c2 with c1. (c2 m7: c1) is translated into:

m3 m7 m4 where m7 has the structure: (opcode-of-c1 m1 m2) .

The structure of an object of class c3 is:

(opcode-of-c3 m3 m7 m4 m5); m3=1 m7=2 m4=3 m5=4

Shall we have c3 defined as !class (c3 m8:(c2 m7:c1) m5:) then c3 would have

the following structure:

(opcode-of-c3 m8 m5) and m8 would have the structure:

(opcode-of-c2 m3 m7 m4)

!class (c4 (c2 { m6: m7: })) has the following structure:

(opcode-of-c4 m3 m6 m7 m4); m3=1 m6=2 m7=3 m4=4.

When valuated by nil , variables in class structures are skipped, for example, assuming:

!class (c1 m3: :c m4:)

!class (c2 (c1 nil) m5:)

then the structure of an object of class c2 is:

(opcode-of-c2 m3 m4 m5)

Variables declared in class templates have the scope of the !class directive.

When a member is declared as being of a type, valuating it with nil actually valuates the

structure denoted by the type. For example passing nil where nb is expected actually passes

the value |nb . In a similar way, nil can translate to |[] , | us, |bl , |st , |did , |fid and | nid

Replicode - Language Specification V2.0

61/104

depending on the context.

Replicode predefines the class structures for built-in object/marker classes (in std.replicode) ï

see section 5 in this Annex.

4.2.2 Built -in Classes

For each class is provided:

Á the class structure, i.e. its structure (if any) and an expression of the form: opcode list-of-
member-names with a description of its members; class names starting with an
underscore denote convenience constructs used to build other classes;

Á a development of the structure. Comments indicate member names. The symbol ... used

in the developments denotes place-holders defined in template classes, i.e. corresponds
to a variable. N.B.: this symbol is not part of Replicode;

Á a description of the class.

view

Structure

!class (view[] ijt : us sln :nb res: us grp:grp org: sync: nb)

i jt - injection-time: a timestamp representing the creation time of the object. When a view

originates from a remote node, the injection time is the time of reception of the object by the
target node.

sln ï saliency: a number in [0,1] representing the final saliency value of the object.

res ï resilience: a number representing the remaining time to live of the object, in microseconds.

grp ï group: a reference to the group the view lives in. This value cannot be nil , i.e. no view can

exist outside of a group.

org ï origin: a reference to the group (if any) that produced the object locally (i.e. on the same

computing node), or a reference to the remote node that ejected the object.

sync ï synchronization mode: a number in {0,1} defining the rule for eligibility for reduction. 0

means that the view will be eligible when it becomes salient (synchronization on front), 1 means
that the view will be eligible when it is salient (synchronization on state).

Development

[ijt sln res grp org sync]

Description

A class defining the data for any view on any object, except instantiated programs and groups.

grp_view

Structure

!class (grp_view[] ijt : us sln :nb res: us grp:grp org: sync:nb vis :nb cov:nb)

i jt - defined as for view.

sln ï defined as for view.

res ï defined as for view.

grp ï defined as for view.

org ï defined as for view.

sync ï defined as for view.

vis ï visibility: a number in [0,1] representing the final visibility of the group.

cov ï copy on visibility: a number in {0,1}. When set to 1, whenever the group is visible from

another group G, then all the salient groupôs members are copied into G. Predefined macros:
COV_ON and COV_OFF.

Development

Replicode - Language Specification V2.0

62/104

[ijt sln res grp org sync vis cov]

Description

A class defining the data for any view on groups.

pgm_view

Structure

!class (pgm_view[] ijt : us sln :nb res: us grp:grp org: sync:nb act :nb)

i jt - defined as for view.

sln ï defined as for view.

res ï defined as for view.

grp ï defined as for view.

org ï defined as for view.

sync ï defined as for view.

act ï activation: a number in [0,1] representing the final activation of the instantiated reactive

object.

Development

[ijt sln res grp org sync act]

Description

A class defining the data for any view on instantiated programs.

_obj

Structure

!class (_obj :~ psln_thr:nb)

psln_thr ï a threshold to control the propagation of saliency changes: this is a number in [0,1]

such as if the saliency change is lesser than the threshold, then the propagation of the change
is inhibited. In particular, if psln_thr is set to 1, then no propagation will ever occur, and if

psln_thr is set to 0, then any change will be propagated. The changes of saliency are

propagated to all the markers in the objectôs marker set. This means that the change will be
applied to all said markers in their respective views. The propagation is not applied further (e.g.
to the markers of the markers) unless the markers have their own psln _thr value set to a value

lesser than 1. When a marker enables propagation, the saliency change does not only
propagate to the markerôs own markers, but also to the objects it may refer to. Propagating
saliency to an object is treated by the executive as if there had been issued a call to mod on the

saliency of the object requesting (sln is mediated) the same change, transformed into the range

of the target object. The executive detects and prevents recursive propagation.

Development

... psln_thr

Description

A template class defining common data for all objects.

ptn

Structure

!class (ptn skel : guards:[])

skel ï skeleton: an expression possibly containing variables, or an atom.

guards - a set of guards: a guard is an expression referencing variables in the skeleton and

expressing conditions on these.

Development

(ptn skel guards)

Replicode - Language Specification V2.0

63/104

Description

A pattern.

|ptn

Structure

!class (|ptn skel : guards:[])

Same constituents as in a pattern.

Development

Same development as ptn .

Description

An anti-pattern.

pgm

Structure

!class (pgm (_obj {tpl:[::ptn] inputS:[] guards:[::xpr] prods: }))

tpl ï template arguments: a set of patterns.

input s ï a set of patterns defining the inputs.

guards - a set of expressions.

prods ï set of productions: a production is a call to an internal command (icmd).

Development

(pgm

[patterns]; tpl

[patterns]; inputs

[expressions]; guards

[production s]; prods

psln_thr)

Description

Program. Patterns in programs must specify the opcode of the expression specified in their
skeletons. It is not allowed to define variables on said opcodes (in contrast with the patterns
found in the red operator). This applies to the patterns specified in both the template arguments

and the inputs of the program. Productions are output when objects match the patterns and
guards defined in the input section. To be executable, a program needs to be instantiated, i.e.
passed actual template parameters (using ins).

|pgm

Structure

!class (|pgm (_obj {tpl:[::ptn] inputS:[] guards:[::xpr] prods:}))

Same constituents as in a program.

Development

Same development as for a program.

Description

An anti-program, i.e. a program that outputs its productions when no object matches its inputs.

No production shall contain any reference to variables in the inputs. To be executable, an anti-
program needs to be instantiated, i.e. passed actual template parameters.

_grp

Structure

!class (grp (_obj { upr:nb spr:nb sln_thr:nb act_thr:nb vis_thr:nb c_sln:nb c_sln_thr:nb

Replicode - Language Specification V2.0

64/104

c_act:nb c_act_thr:nb dcy_per:nb dcy_tgt:nb dcy_prd: nb sln_chg_thr :nb sln_chg_prd:nb

act_chg_thr:nb act_chg_prd:nb avg_sln:nb high_sln :nb low_sln :nb avg_act:nb high_act:nb

low_act :nb high_sln_thr :nb low_sln_thr :nb sln_ntf_prd:nb high_act_thr:nb low_act_thr :nb

act_ntf_prd:nb ntf_new:nb low_res_thr:nb ntf_grp s: [] :~ }))

upr - update-period: an integral number representing the period with which the group (actually,

the rMem managing the group) updates the saliency and activation values of the objects in the
group. This value is actually a multiple of the base period defined for the entire system (see
Annex 2). N.B.: the resilience values are updated at a fixed period, defined for all groups,
system-wide.

spr ï signaling period: an integral number representing the period with which the group triggers

the execution of programs and models. This value is actually a multiple of the base period
defined for the entire system (see Annex 2).

sln _thr ï saliency threshold: a number in [0,1] specifying the saliency threshold of the group.

Any object projected on the group with a saliency lesser than or equal to the threshold will be
considered non salient, salient otherwise. Thus, when sln_thr is set to 1, no object can be

salient in the group, and when sln_thr is set to 0, only objects with a strictly positive saliency will

be salient.

act _thr ï activation threshold: a number in [0,1] specifying the activation threshold of the group.

Any instantiated reactive object projected on the group with an activation lesser than or equal to
the threshold will be considered not active, active otherwise. Thus, when act _thr is set to 1, no

object can be active in the group, and when act _thr is set to 0, only objects with a strictly

positive activation will be active.

vis _thr ï visibility threshold: a number in [0,1] specifying the visibility threshold of the group. Any

group projected on the group with a visibility lesser than or equal to the threshold will be
considered not visible, visible otherwise. Thus, when vis _thr is set to 1, no group can be visible

in the group, and when vis _thr is set to 0, only groups with a strictly positive visibility will be

visible in the group.

c_sln ï content saliency: a number in [0,1] specifying the saliency of the content of the group as

a whole. This value is compared against the c_sln_thr value (see below) to determine whether
the group is c-salient or not.

c_sln _thr ï content saliency threshold: a number in [0,1]. Similar to sln_thr but applies to c_sln

instead of sln . When a group is not c-salient, none of the objects it contains can be inputs for

any reactive object in the group. When a group is c-salient, the objects it contains can be inputs
if they are salient themselves.

c_act ï content activation: a number in [0,1] specifying the activation of the content of the group

as a whole. This value is compared against the c_act_thr value (see below) to determine
whether the group is c-active or not.

c_act_thr ï content saliency threshold: a number in [0,1]. Similar to act_thr but applies to c_act

instead of act . When a group is not c-active, none of the instantiated reactive objects it contains

can run. When a group is c-active, its instantiated reactive objects can run if they are active
themselves.

dcy_per ï decay percentage: a number in [-1,1] representing the decay of a given value (dcy_tgt

below) in percentage.

dcy_tgt ï decay target value: a number in {0,1} specifying the value to apply the decay on: 0 for

the saliencies of all objects in the group, 1 for the saliency threshold of the group. Predefined
macros: DCY_SLN and DCY_SLN_THR.

dcy_prd ï decay period: an integral number specifying a multiple of the update period defined for

the group (upr). The decay will be performed as follows: the target value will undergo a decay

specified by dcy_per over a period equal to the upr*dcy_prd . Decay is implemented as calls to mod

on the target value over the specified period. For example, if dcy_prd is set to 4 and dcy_per to
50, then this is equivalent to calling mod.target-value 12.5 four times in a row, once per update

period.

sln_chg_thr ï threshold on saliency changes: a number in [0,1] under which a change of an

objectôs saliency will not be notified.

sln_chg_prd ï saliency change monitoring period: an integral number specifying a multiple of the

group update period (upr). This defines the period over which the group accumulates the

changes in saliency of its members. At the end of each such periods, the accumulated changes

Replicode - Language Specification V2.0

65/104

are compared to sln_chg_thr and changes greater than this threshold are notified using a marker

mk.sln_chg (see section 4.3).

act_chg_thr ï threshold on activation changes: a number in [0,1] under which a change of an

objectôs activation will not be notified.

act_chg_prd ï activation change monitoring period: an integral number specifying a multiple of

the group update period (upr). This defines the period over which the group accumulates the

changes in activation of its members. At the end of each such periods, the accumulated
changes are compared to act _chg_thr and changes greater than this threshold are notified using

a marker mk.act_chg (see section 4.3).

avg_sln ï average saliency: a number in [0,1] representing the average saliency of the groupôs

member.

high_sln ï highest saliency: a number in [0,1] representing the highest saliency of the groupôs

member.

low_sln ï lowest saliency: a number in [0,1] representing the lowest saliency of the groupôs

member.

avg_act ï average activation: a number in [0,1] representing the average activation of the

groupôs member.

high_act ï highest activation: a number in [0,1] representing the highest activation of the groupôs

member.

low_act ï lowest activation: a number in [0,1] representing the lowest activation of the groupôs

member.

high_sln_thr ï high saliency notification threshold: a number in [0,1]. Whenever an objectôs

saliency becomes higher than the threshold, this event is notified using a marker mk.high_sln

(see section 4.3).

low_sln_thr ï low saliency notification threshold: a number in [0,1]. Whenever an objectôs

saliency becomes lower than the threshold, this event is notified using a marker mk.low_sln (see

section 4.3).

sln_ntf_prd ï saliency notification period: an integral number specifying a multiple of the group

update period (upr). This defines the period at the end of which notification will occur for any

object having become more salient than the high_sln_thr or less salient than low_sln_thr , and

whose saliency is still in the same relationship with regards to the thresholds.

high_act_thr ï high activation notification threshold: a number in [0,1]. Whenever an objectôs

activation becomes higher than the threshold, this event is notified using a marker mk.high_act

(see section 4.3).

low_act_thr ï low activation notification threshold: a number in [0,1]. Whenever an objectôs

activation becomes lower than the threshold, this event is notified using a marker mk.low_act

(see section 4.3).

act_ntf_prd ï activation notification period: an integral number specifying a multiple of the group

update period (upr). This defines the period at the end of which notification will occur for any

object having become more active than the high_act_th r or less active than low_act_thr , and

whose activation is still in the same relationship with regards to the thresholds.

ntf_new ï a flag in {0,1} that turns on (1) or off (0) the notification of objects being injected in the

group for the first time.

low_res_thr ï low resilience notification threshold: a number in [0,1]. Whenever an objectôs

resilience becomes lower than the threshold, this event is notified using a marker mk.low_res

(see section 4.3).

ntf_grp s ï notification groups: a set of references to the destination groups where notifications

are to be injected. When a reference is nil , the destination is the group itself. This set cannot be

altered once the group is created.

Development
upr spr sln_thr act_thr vis_thr c_sln c_sln_thr c_act c_act_th r dcy_per dcy_tgt dcy_prd

sln_chg_thr sln_chg_prd act_chg_thr act_chg_prd avg_sln high_sln low_sln avg_act high_act

low_act high_sln_thr low_sln_thr sln_ntf_prd high_act_thr low_act_thr act_ntf_prd ntf_new

low_res_thr ntf_grp s

...

psln_thr

Replicode - Language Specification V2.0

66/104

Description

A template class defining data for groups (grp and rgrp).

grp

Structure

!class (grp (_ grp nil))

Development

(grp

upr spr sln_thr act_thr vis_thr c_sln c_sln_thr c_act c_act_thr dcy_per dcy_tgt dcy_prd

sln_chg_thr sln_chg_prd act_chg_thr act_chg_prd avg_sln h igh_sln low_sln avg_act high_act

low_act high_sln_thr low_sln_thr sln_ntf_prd high_act_thr low_act_thr act_ntf_prd ntf_new

low_res_thr ntf_grps

psln_thr)

Description

A group.

_fact

Structure

!class (_fact (_obj { obj: after :us before : us cfd:nb :~ }))

obj ï a reference to an object.

after ï the low end of the time interval when the fact holds (in microseconds).

before ï the high end of the time interval when the fact holds (in microseconds).

cfd ï confidence: a number in [0,1] indicating the plausibility that the fact actually holds .

Development

_fact obj after before cfd psln_thr ...

Description

A template class for defining facts and similar classes.

fact

Structure

!class (fact (_fact nil))

Development

(fact obj after before cfd psln_thr)

Description

A fact.

|fact

Structure

!class (| fact (_ fact nil))

Same constituents as in a fact.

Development

Same development as for a fact.

Description

The negation of a fact.

pred

Replicode - Language Specification V2.0

67/104

Structure

!class (pred (_obj {obj:}))

obj ï the predicted fact.

Development
(pred obj psln_thr)

Description

A .prediction

goal

Structure

!class (goal (_obj { obj: actor :ent }))

obj ï the target fact.

actor ï the system pursuing the goal (it may be self, or any entity in the environment that

manifests intentions).

Development
(goal obj actor psln _thr)

Description

A goal.

cst

Structure

!class (cst (_obj {tpl_args:[] objs:[] fwd_fun:[] bwd_fun:[] out_grps}))

tpl_args ï set of variables used as template arguments..

objs ï the patterns of a composite state.

fwd_fun ï set of expressions used as guards during forward chaining.

bwd_fun ï set of expressions used as guards during backward chaining.

out_grps ï set of groups where to inject instances of the composite state.

Development
(cst

[variables]; tpl args

[expressions]; patterns

[expressions]; forward guards

[expressions]; backward guards

[groups]; output groups

psln_tr)

Description

A composite state.

mdl

Structure

!class (mdl (_obj {tpl_args:[] objs:[] fwd_fun:[] bwd_fun:[] out_grps str:nb cnt:nb sr:nb

dsr:nb}))

tpl_args ï set of variables used as template arguments..

objs ï the patterns of a model (only two).

fwd_fun ï set of expressions used as guards during forward chaining.

bwd_fun ï set of expressions used as guards during backward chaining.

out_grps ï set of groups where to inject the predictions made by the model.

str ï strength of the model, in [0,1].

Replicode - Language Specification V2.0

68/104

cnt ï number of evidences for a model (i.e. the number of times it predicted something).

sr ï success rate of the model: number of times the mdoel predicted well divided by cnt .

dsr ï derivative of the success rate, i.e. the success rate as it was at the former to last evidence.

Development
(mdl

[variables]; tpl args

[expressions]; patterns

[expressions]; forward guards

[expressions]; backward guards

[groups]; output groups

str cnt sr dsr

psln_tr)

Description

A model.

icst

Structure

!class (icst (_obj {cst:cst tpl_args:[] args:[]}))

Development

(icst cst

[values];tpl_args

[values-or-variables];args

psln_thr)

Description

An instantiated composite state.

imdl

Structure

!class (imdl (_obj {mdl:mdl tp l_args:[] args:[]}))

Development

(imdl mdl

[values];tpl_args

[values-or-variables];args

psln_thr)

Description

An instantiated model.

icmd

Structure

!class (i cmd function:fid args:[])

function ï function of the executive.

args ï arguments of the function: a list of arguments, i.e. a set where the order of its members

matches the order of the formal arguments of the function.

Development

(i cmd function

[expressions]; args

)

Description

Replicode - Language Specification V2.0

69/104

A call to an internal command (also called a function of the executive), sent in asynchronous
mode - there is no return value.

cmd

Structure

!c lass (cmd (_obj { function : fid device: did args:[] }))

function - device function: the function to be executed by the device.

device - the device commanded to execute the function.

args ï arguments of the function: a list of arguments, i.e. a set where the order of its members

matches the order of the formal arguments of the function.

Development

(cmd function device

[expressions]; args

psln_thr

)

Description

A call to a device function, i.e. a command, sent in asynchronous mode - there is no return
value.

ent

Structure

!class (ent (_obj nil))

Development

(ent psln_thr)

Description

An entity. Entities do not hold any code: they are meant to be referenced by other objects to
differentiate from each other. For example, entities are commonly used to indicate what markers
apply to - like in (mk.position self a-position ...) where self is a predefined entity.

ont

Structure

!class (o nt (_obj nil))

Development

(ont psln_thr)

Description

A member of an ontology. Such objects do not hold any code: they are meant to be referenced
by other objects to differentiate from each other.

dev

Structure

!class (dev (_obj nil))

Development

(dev psln_thr)

Description

A device. Device identifiers have to match the ones used by the messaging infrastructure.

nod

Structure

Replicode - Language Specification V2.0

70/104

!class (nod (_obj id: nid))

id ï identifier: a numerical identifier
9
 (see Annex 3).

Development

(nod id psln_thr)

Description

A computing node, i.e. an rMem. Node identifiers have to match the ones used by the
messaging infrastructure.

ipgm

Structure

!class (ipgm (_obj { code: args: [] run:bl tsc:us nfr:bl }))

code ï the instantiated code: either a program or an anti-program.

args ï the instantiation values: a set of expressions or references to objects.

run ï a Boolean value indicating if the program shall execute only once (false) or whenever
possible (true).

tsc ï time scope: a number (in microseconds) representing the time to live of an overlay.

nfr ï notify flag: a number in {0,1} representing whether or not the rCores executing an

instantiated reactive object notifies the reduction of input objects (mk.rdx). Predefined macros:

NOTIFY and SILENT.

Development

(ipgm code

[expressions-or-references-to-objects] ; args
run tsc nfr

psln_thr

)

Description

An instantiated program or anti-program.

icpp_pgm

Structure

!class (icpp_pgm (_obj {code: st args:[] run:bl tsc:us nfr:bl}))

code ï the instantiated code: the name of a C++ program to load.

args ï the instantiation values: a set of expressions or references to objects.

run ï a Boolean value indicating if the program shall execute only once (false) or whenever
possible (true).

tsc ï time scope: a number (in microseconds) representing the time to live of an overlay.

nfr ï notify flag: a number in {0,1} representing whether or not the rCores executing an

instantiated reactive object notifies the reduction of input objects (mk.rdx). Predefined macros:

NOTIFY and SILENT.

Development

(i cpp_pgm code

[expressions-or-references-to-objects] ; args
run tsc nfr

psln _thr

)

Description

An instantiated C++ program; the program is supplied by the programmer as a member of the
usr.operators shared library.

9
 N.B.: a cluster running a Replicode application can be composed of 256 nodes at most.

Replicode - Language Specification V2.0

71/104

perf

Structure

!class (perf (_obj {rj_ltcy:nb d_rj_ltcy:nb tj_ltcy:nb d_tj_ltcy:nb}))

rj_ltcy ï the delay between the time of injection of a reduction job and it!s processing time,

averaged over the perf_sampling_period .

d_rj_ltcy ï the value above, at the last sampling time.

tj_ltcy ï the delay a thread had to wait for processing the job, averaged over the sampling
period.

d_rj_ltcy ï the value above at the last sampling time.

Development
(perf rj_ltcy d_rj_ltcy tj_ltcy d_tj_ltcy

psln_thr

)

Description

A performance counter. All values in us encoded as floats.

4.3 Marker Classes

mk.rdx

Structure

!class (mk.rdx (_obj { code: inputs: [] prods: [::cmd] }))

code: a reference to the instantiated program or model having performed the reduction.

inputs : a set containing references to the input objects that were reduced. Is emtpy in case of

anti-programs and input-less programs.

prods: a set containing the commands that result from the reduction.

Development

(mk.rdx code

[references-to-input-objects] ; inputs

[commands] ; prods

psln_thr)

Description

Notification of a reduction. Values in prods are expressions resulting from the evaluation of the

commands defined in the reactive object. The commands mod and set are not notified since they

are requests for change and not actual changes. Groups notify the actual changes of control
values using dedicated markers (see below).

mk.grp_pair

Structure

!class (mk.grp_pair (_obj {primary:grp secondary:grp}))

primary : a reference to a primary group.

secondary: a reference to a secondary group.

Development
(mk.grp- pair primary_group secondary_group psln_thr)

Description

The primary group hosts models that have high a success rate enough to be considered
meaningful for the operation of the system. When models are no longer considered good
enough, they are run in the secondary group, to give them a chance to get a better success
rate, and thus, to be moved back to the primary group.

Replicode - Language Specification V2.0

72/104

mk.low_sln

Structure

!class (mk.low_sln (_obj obj:))

obj - object: a reference to the object having reached a low saliency.

Development

(mk.low_sln obj psln_thr)

Description

Notification of an object having reached a low saliency. This notification is issued by rMems
following an object having reached a saliency lower than the low saliency threshold in a group.
This group is accessible using the org member of the markerôs view.

mk.high_sln

Structure

!class (mk.high_sln (_ob j obj:))

obj - object: a reference to the object having reached a high saliency.

Development

(mk.high_sln obj psln_thr)

Description

Notification of an object having reached a high saliency. This notification is issued by rMems
following an object having reached a saliency greater than the high saliency threshold in a
group. This group is accessible using the org member of the markerôs view.

mk.low_act

Structure

!class (mk.low_act (_obj obj:))

obj - object: a reference to the object having reached a low activation.

Development

(mk.low_act obj psln_thr)

Description

Notification of an object having reached a low activation. This notification is issued by rMems
following an object having reached an activation lower than the low activation threshold in a
group. This group is accessible using the org member of the markerôs view.

mk.high_act

Structure

!class (mk.high_act (_obj obj:))

obj - object: a reference to the object having reached a high activation.

Development

(mk.high_act obj psln_thr)

Description

Notification of an object having reached a high activation. This notification is issued by rMems
following an object having reached an activation greater than the high activation threshold in a
group. This group is accessible using the org member of the markerôs view.

mk.low_res

Structure

Replicode - Language Specification V2.0

73/104

!class (mk.low_res (_obj obj:))

obj - object: a reference to the object having reached a low resilience.

Development

(mk.low_res obj psln_thr)

Description

Notification of an object having reached a low resilience. This notification is issued by rMems
following an object having reached a resilience lower than the low resilience threshold in a
group. This group is accessible using the org member of the markerôs view.

mk.sln_chg

Structure

!class (mk.sln_chg (_obj { obj : chg:nb}))

obj - object: a reference to the object whose saliency changed.

chg ï saliency change: a number in [0,1] representing the change of saliency.

Development

(mk.sln_chg obj chg psln_thr)

Description

Notification of a change of an objectôs saliency in a group. This group is accessible using the org

member of the markerôs view. This notification is issued by rMems when the objectôs saliency
has changed by an amount greater than the saliency change threshold defined by the group.

mk.act_chg

Structure

!class (mk.act_chg (_obj {obj: chg:nb}))

obj - object: a reference to the object whose activation changed.

chg ï activation change: a number in [0,1] representing the change of activation.

Development

(mk.act_chg obj chg psln_thr)

Description

Notification of a change of an objectôs activation in a group. This group is accessible using the
org member of the markerôs view. This notification is issued by rMems when the objectôs

saliency has changed by an amount greater than the saliency change threshold defined by the
group.

mk.new

Structure

!class (mk.new (_obj obj:))

obj - object: a reference to the newly injected object.

Development

(mk.new obj psln_thr)

Description

Notification of the injection of a new object in a group. This group is accessible using the org

member of the markerôs view. This notification is issued by rMems whenever an object is
injected in a group for the first time, or is visible from that group for the first time.

Replicode - Language Specification V2.0

74/104

4.4 Entities

self

Description

The application, i.e. the system as an actor in an application domain.

4.5 Group s

stdin

Description

The standard input group. This is the group that receives object from remote nodes (i.e. rMems).

stdout

Description

The standard output group. This a group from which objects are typically ejected to remote
nodes. Notice however, that it is allowed to eject objects from any other group.

4.6 Devices

exe

Description

The executive.

Replicode - Language Specification V2.0

75/104

5 Standard Definitions
This section gives the standard definitions used in Replicode, specified in the file std.replicode .
; std.replicode

; utilities.

!class (_obj :~ psln_thr:nb)

!class (_grp (_obj {upr:nb sln_thr:nb act_thr:nb vis_thr:nb c_sln:nb c_sln_thr:nb c_act:nb

c_act_thr:nb dcy_per:nb dcy_tgt:nb dcy_prd:nb dcy_auto:nb sln_chg_thr:nb sln_chg_prd:nb

act_chg_thr:nb act_chg_prd:nb avg_s ln:nb high_sln:nb low_sln:nb avg_act:nb high_act:nb

low_act:nb high_sln_thr:nb low_sln_thr:nb sln_ntf_prd:nb high_act_thr:nb low_act_thr:nb

act_ntf_prd:nb ntf_new:nb low_res_thr:nb ntf_grps:[::grp] :~}))

!class (_fact (_obj {obj: after:us before:us cfd:nb :~}))

!class (val (_obj val:))

!class (val_hld val:)

; mapping low - level objects - > r - code.

!class (ent (_obj nil))

!class (ont (_obj nil))

!class (dev (_obj nil))

!class (nod (_obj id:nid))

!class (view[] sync:bl ijt:us sln:nb res:nb grp:grp org:)

!class (grp_view[] sync:bl ijt:us sln:nb res:nb grp:grp org: cov:bl vis:nb)

!class (pgm_view[] sync:bl ijt:us sln:nb res:nb grp:grp org: act:nb)

!class (ptn skel:xpr guards:[::xpr])

!class (|ptn skel:xpr guards:[::xpr])

!class (pgm (_obj {tpl:[::ptn] inputs:[] g uards:[::xpr] prods:}))

!class (|pgm (_obj {tpl:[::ptn] inputs:[] guards:[::xpr] prods:}))

!class (grp (_grp nil))

!class (icmd function:fid args:[])

!class (cmd (_obj {function:fid args:[]}))

!class (cmd_arg (_obj {function:fid arg:ont}))

!class (ipgm (_o bj {code: args:[] run:bl tsc:us nfr:bl}))

!class (icpp_pgm (_obj {code:st args:[] run:bl tsc:us nfr:bl}))

; mapping low - level markers - > r - code.

!class (mk.rdx (_obj {code: inputs:[] prods:[]}))

!class (mk.low_sln (_obj obj:))

!class (mk.high_sln (_obj ob j:))

!class (mk.low_act (_obj obj:))

!class (mk.high_act (_obj obj:))

!class (mk.low_res (_obj obj:))

!class (mk.sln_chg (_obj {obj: chg:nb}))

!class (mk.act_chg (_obj {obj: chg:nb}))

!class (mk.new (_obj obj:))

; mapping high - level objects - > r - code.

!cl ass (mk.val (_obj {obj: attr:ont val:}))

!class (mk.act (_obj {actr:ent cmd:cmd}))

!class (fact (_fact nil))

!class (|fact (_fact nil))

!class (var (_obj nil))

!class (cst (_obj { tpl_args:[] objs:[] fwd_fun:[] bwd_fun:[] out_grps:[::grp]}))

!class (mdl (_o bj { tpl_args:[] objs:[] fwd_fun:[] bwd_fun:[] out_grps:[::grp] str:nb cnt:nb

sr:nb dsr:nb}))

!class (icst (_obj {cst:cst tpl_args:[] args:[]}))

!class (imdl (_obj {mdl:mdl tpl_args:[] args:[]}))

!class (pred (_obj {obj:fact}))

!class (goal (_obj {obj:fact actr:ent}))

!class (success (_obj obj:))

!class (mk.grp_pair (_obj {primary:grp secondary:grp}))

Replicode - Language Specification V2.0

76/104

; internal control structures.

!class (sim (super_goal:)); simulation head.

!class (sol (super_goal: contribution:)); solution.

!class (cmt (requirement:)); c ommitment.

; mapping operator opcodes - > r - atoms.

!op (_now):us

!op (rnd :nb):nb

!op (equ : :):

!op (neq : :):

!op (gtr : :):

!op (lsr : :):

!op (gte : :):

!op (lse : :):

!op (add : :):

!op (sub : :):

!op (mul :nb :nb):nb

!op (div :nb :nb):nb

!op (dis : :):nb

!op (ln :nb):nb

!op (exp :nb):nb

!op (log :nb):nb

!op (e10 :nb):nb

!op (syn :):

!op (ins : :[] :bl :us :bl):

!op (red :[] :[] :[]):[]

!op (fvw : :):

; operator aliases.

!def now (_now)

!def = equ

!def <> neq

!def > gtr

!def < lsr

!def <= gte

!def >= lse

!def + add

!def - sub

!def * mul

!def / div

!def \ syn

; mapping devices - > r - atoms.

!def exe 0xA1000000; the executive.

; mapping device functions - > r - atoms.

!dfn (_inj :

!dfn (_eje : : :nid)

!dfn (_mod : :nb)

!dfn (_set : :nb)

!dfn (_new_class

! dfn (_del_class

!dfn (_ldc :st)

!dfn (_swp :nb)

!dfn (_prb :nb :st :st :[])

!dfn (_stop)

; device functions aliases.

!def (inj args) (icmd _inj args)

!def (eje args) (icmd _eje args)

!def (mod args) (icmd _mod args)

Replicode - Language Specification V2.0

77/104

!def (set args) (icmd _set args)

!def (new_class args) (icmd _new_class args)

!def (del_class args) (icmd _del_class args)

!def (ldc args) (icmd _ldc args)

!def (swp args) (icmd _swp args)

!def (prb args) (icmd _prb args)

!def (stop args) (icmd _stop args)

; various constants.

!counter __cons tant 0

!def OFF __constant

!def ON __constant

; parameters for tuning the behavior of reactive objects.

; member nfr.

!def SILENT false ; no notification upon production

!def NOTIFY true ; notification upon productions

; parameters for tuning the behavio r of groups.

!def DCY_SLN 0

!def DCY_SLN_THR 1

!def COV_ON true

!def COV_OFF false

!def SYNC_FRONT true

!def SYNC_STATE false

!def RUN_ALWAYS true

!def RUN_ONCE false

Notice the last five directives for loading user-defined object classes, operators, devices and
device functions. All these are to be defined in files having the predefined paths, given by their
corresponding loading directives.

Replicode - Language Specification V2.0

78/104

Annex 2 ð Specification of
the Executive

1 Overview
The executive is composed of several instances of rMem distributed over the cluster:

Á rMems are managing groups (see section 6.2 of the main document);

Á each rMem instantiates an rCore. rCores are responsible for the execution of
instantiated programs and models (see section 4.2 of the main document);

The components forming the executive are defined in one shared object, r_exec. so.

The executive defines two values to be used for defining the time periods that parameterize
cyclic behaviors. These values are specified in microseconds:

Á a base period: the periods upr and spr defined by groups are expressed as multiple of

this base value;

Á the update period of the resilience values. This period is defined per system, not per
group.

These two values are initialized by the function _start .

2 rCore
The rCore is completely hidden by the rMem that instantiates it: there is no need to include it in
the language specification. It suffices to describe its role The role of an rCore is:

Á to execute programs ï i.e. to perform reductions;

Á to build reduction markers ï i.e. used by the rMem to notify reductions.

N.B.: the communication protocol between an rCore and its rMem is not part of the
specification.

Reduction Reduction consists in performing pattern matching on incoming objects and

executing the code in the production section. Reduction operates on temporal sequences of
objects, and these sequences may overlap. rCores create execution overlays to handle these
overlaps, as defined in section 4.2 of the main document.

The output of the reduction is a set of command objects (cmd). These objects are passed to the

rMem for execution. The latter can result in:

Á injection of objects in the group specified by the command;

Á ejection of objects to a remote computing node;

Á request for modification of mediated values;

Á sending of a command to an external device;

Á other actions (loading code, creation of new object classes, etc.);

An rCore is expected to define an array called a value storage, to store template arguments
and intermediate results when evaluating expressions in code ï value storages are instances of
r_code::ReductionInstance (see Annex 4).

Evaluating expression requires executing operators: these are defined in a structure called the
Operator Register (defined in Annex 4).

Marker sets are volatile: this means that during the execution of a program, the marker sets of
the inputs may change after a successful match. In other words, if an input object is scrutinized
for its markers in code fragments located after the guards of the pattern that was matched, then
said markers may not be the same. This practice ï i.e. a many step pattern matching ï is
however strongly discouraged for efficiency reasons (avoiding too many invocations of red) and

for preserving machine-readability of code (it is easier to craft code that focuses on one pattern
construct (ptn) rather than having to search code for conditions located in many places).

Replicode - Language Specification V2.0

79/104

View sets are also volatile.

Reduction Markers Upon a successful reduction, the rCore shall construct a reduction marker

(mk.rdx defined in the Annex 1) and pass it to the rMem. This construction can happen only if
the program has its nfr (for ñnotify reductionò) member set to 1.

Replicode - Language Specification V2.0

80/104

3 rMem
3.1 Role
The role of an rMem is:

Á to update periodically mediated values, as requested by calls to _mod and _set .

The final value is the average of the requests, and mediated members are
updated at periods defined by the upr member of the group ï except the

resilience values, which are updated at a fixed period defined for the entire
system.

Á to detect instantiated programs gaining activation, and loading them in the
rCore for execution; symmetrically, the rMem unloads an instantiated program
from an rCore when it loses activation;

Á to signal active input-less instantiated programs at each of the periods specified
by their tsc member.

Á to detect object gaining saliency, and passing them to its rCore as input objects;

Á to manage the allocation in memory, by update periodically the resilience of
objects (decay) and detect their losing resilience to delete them from memory; if
some other objects hold a reference to an object with no resilience, the object
remains in memory but will never constitute an input for programs anymore. It
will however still be visible in patterns targeting objects that hold a reference to
it;

Á to detect identical objects and eliminate duplicates - identity is the identity of r-
code regardless of the mediated values. When duplicate exist in a given group,
the view is rebuilt using the greatest values available among the different views
of the duplicates;

Á to notify programs of key events occurring in the group, depending on the
parameters of the group;

Á to implement the behavior of groups as defined in section 6.2 of the main
document (decay, exposition of statistics, etc.).

3.2 Functions
All the functions of the executive are implemented by the rMems. The prototype of these
functions is:

typedef void (* Function)(ExecutionContext & context);

See Annex 4 for the definition of ExecutionContext .

Unless stated otherwise, when functions calls feature arguments that are actually r-atoms
pointers (r-atoms of types internal, view, value, this or chain pointer), the indirections must be
performed before invoking the C++ code. In particular, timestamps are to be passed using the
leading r-atom, not the first 32 bits word ï see Annex 3 for the definition of r-code.

The constants used to valuate arguments of some of the functions are defined in std.replicode

(see section 5 of Annex 1).

As a general rule, all functions are required to fail gracefully when passed ill-formed or
unsuitable arguments.

_inj

Arguments

0: the r-atom leading the definition of an object.

1: the r-atom leading the definition of a view for the object.

Description

Injects a new object inside the group specified in the accompanying view. The ijt member of

the view holds a value defining a lower boundary on the injection time. For example, the value
(+ now 100000) means that the object shall be injected after 100 milliseconds, counted from the

time of the invocation of inj . The grp member specifies the group where to inject the object. The

Replicode - Language Specification V2.0

81/104

member org shall be set eventually by the rMem to the group where the reduction occurred.

Injection commands are batched: this is to make sure that injected objects can only be available
as input objects when their markers produced in the same batch are also available. A batch is
defined as the set of productions resulting from the inputs processed at a given time.

rMems are responsible for eliminating object duplicates: shall a batch deliver an object that
already exist in the system, then the new object is not injected; however, if the object was to be
injected in a group where it was not already present, then the object is actually projected in the
group, with the specified view. If a view for the object already exist in the group, then the view is
adjusted to hold the highest values available among the two views (the old one and the new
one).

_eje

Arguments

0: the r-atom leading the definition of an object.

1. the r-atom leading the definition of a view.

2. the r-atom identifying a destination node.

Description

Ejects a new object in the remote node specified by the third argument, in a group specified by
the view. Only stdin and stdout are allowed for specifying the destination group. Upon reception,

the member ijt shall be set to the reception time. Elimination of duplicates on the destination

group in the remote node applies as for _inj .

_mod

Arguments

0: an r-atom representing a pointer chain to a numerical value.

1: a number specifying the amount to be added to the current value. For activation, saliency and
thresholds, the number is in [-1, 1], for resilience values the number is in {0, 2

24
} U {forever }.

Description

Requests the rMem to modify of one of the members of an object. Such members must map to
numerical values.

_mod does not do anything when the first argument is not a pointer chain.

When appropriate (i.e. when the value is either a saliency, and activation, a visibility or a
resilience value), the rMem mediates these requests, i.e. it computes their average and uses the
result as the final value of the target member. This mediation is performed at a fixed period (upr)

defined for each group. The resilience values are a special case: such values are updated at a
fixed period defined for the entire system.

When an object enjoys an infinite resilience, this cannot be affected by any invocations of _mod.

_set

Arguments

0: an r-atom representing a pointer chain to a numerical value.

1: a number specifying the new value. For activation and saliency values and respective
threshold, it is a number in [0, 1]; for resilience values, a number in {-1, 2

24
}, -1 specifying an

infinite resilience; for periods, a number representing a multiple of the base period value.

Description

Requests the rMem to assign a value to one of the members of an object. As for mod, rMems

mediate the final assigned value when appropriate.

_set does not do anything when the first argument is not a pointer chain.

For an object to gain infinite resilience, the average of set values must be -1. If, among the
invocations of _set , there is no -1 value, the resilience changes to the value to the newly

computed average of the requests

Replicode - Language Specification V2.0

82/104

_new_class

Arguments

0: an r-atom leading the definition of an object. This argument is used as a template to define a
new r-atom (its type - object or marker ï and arity).

Description

Creates a new object or marker class in the group where the call is issued.

_del _class

Arguments

0: an r-atom leading the definition of the object to be deleted.

Description

Deletes an object or marker class from the group where the call is issued. In addition, all

instances of the class in the group will be deleted, regardless of their resilience.

_l dc

Arguments

0: a character string representing the path of the file containing the code to load (i.e. an image,
see section 2 of the Annex 3).

Description

Loads code from a binary input stream (r-code form). _ldc loads an image from disk and maps it

contents into memory.

_swp

Arguments

0: a numerical constant in {0, 1} indicating the operation to be performed (swap to disk: 0, swap
to memory. 1).

Description

Swaps the content of the entire node to/from disk. When swapped to disk. The r-code is stored
as an image (see section 2 of the Annex 3). Images stored/loaded by _swp bear the name

image.<nid>.rcode where nid is the identifier of the node.

_stop

Arguments

None.

Description

Terminates the rMem and its rCore, on the node where the function is executed. The memory is
flushed and the rMem and its rCore are terminated.

3.3 Notifications
Notifications by an rMem are carried by different object classes, depending on the event to be
notified:

Á process objects (pro): used to notify the beginning of the execution of a device
function. Execution termination markers (mk.xet) are attached to process objects upon

termination of the device function;

Á reduction markers (mk.rdx), as built by rCores upon successful reduction;

Á mk.new: n otification of the injection of a new object in a group. This group is the org

member of the markerôs view. This notification is issued by rMems whenever an object

Replicode - Language Specification V2.0

83/104

is injected in a group for the first time, or is visible from that group for the first time.

Á mk.low_sln: Notification of an object having reached a low saliency. This notification is

issued by rMems following an object having reached a saliency lower than the low
saliency threshold in a group. This group is the org member of the marker.

Á mk.high_sln: Notification of an object having reached a high saliency. This notification

is issued by rMems following an object having reached a saliency greater than the high
saliency threshold in a group. This group is the org member of the marker.

Á mk.low_act: Notification of an object having reached a low activation. This notification

is issued by rMems following an object having reached an activation lower than the low
activation threshold in a group. This group is the org member of the marker.

Á mk.high_act: Notification of an object having reached a high activation. This

notification is issued by rMems following an object having reached an activation greater
than the high activation threshold in a group. This group is the org member of the

markerôs view.

Á mk.low_res : <description>

Á mk.sln_chg. Notification of a change of an objectôs saliency in a group. This group is
the org member of the markerôs view. This notification is issued by rMems when the

objectôs saliency has changed by an amount greater than the saliency change
threshold defined by the group.

Á mk.act_chg: Notification of a change of an objectôs activation in a group. This group is
the org member of the markerôs view. This notification is issued by rMems when the

objectôs saliency has changed by an amount greater than the saliency change
threshold defined by the group.

N.B.: some of these notifications are enabled by parameters found in groups ï see Annex 1 for
details.

Notification of events occurring in a group are to be injected by the rMem in the notification
group (ntf_grp) specified by the group.

3.4 Interface

rMems implement the following interface (defined in a shared object, r_code.so , the rMem itself

being defined in another shared object, r_exec.so):

// file r_core .h

using namespace std;

namespace r_code{

struct dll_export ObjectReceiver{

 enum{

 INPUT_GROUP=0,

 OUTPUT_GROUP=1

 } Destination;

 virtual void receive(

 Object *object,

 vector< Atom> viewData,

 uint32 nodeID,

 Destination dest ination)=0;

 virtual void receive (

 Object *object,

 vector< Atom> viewData,

 uint32 nodeID,

 Group *destination

)=0;

};

struct dll_export Asynch ronous{

 virtual void start()= 0;

 virtual void stop()=0;

Replicode - Language Specification V2.0

84/104

 virtual void resume()=0;

 virtual void suspend()=0;

};

struct dll_export Mem:

public ObjectReceiver,

public Asynchronous{

 static Mem* create(ObjectReceiver* output);

 virtual ~ Mem();

};

}

The functions receive load objects and views in memory. The classes Atom and

Object are defined respectively in Annex 3 and Annex 4.

Replicode - Language Specification V2.0

85/104

Annex 3 ð R-code
Specification

1 Overview
r-code is the name of the internal representation of Replicode constructs.

The content of objects (for example, the code of a program) is shared amongst the groups
hosted by the same node. However, the values used to control objects in groups (e.g. ijt, res ,

sln , act /vis) must be defined locally per group and cannot be shared. This calls for

differentiating the content of the object from the control data.

Figure 1 ï Overview of Views and Objects

A view is local to a group and defines local data describing an object in the group.
Views do not hold any pointer: they are embedded in the code of objects (plain
arrows).

An object holds pointers (dashed arrows) to (a) any objects its code may explicitly
refer to (reference set) and, (b) the markers attached to it (marker set).

When an object o is an input for a program p in a group g, the executive copies
the view of o in g into the code of o. In other words, the overlays of p have each a
private copy of o, patched with the correct view.

Groups and markers are also objects (grey segments).

The view data, the object code and the view set are stored in respective
contiguous arrays, and encoded in r-code (bold outlining). In contrast, the
references held by objects (i.e. markers and explicit references) are stored as raw
pointers ï this also holds for the set of group members.

When an object is created, its code and reference set are fixed and will not
change. However, its view and marker set can change over time (as can the
groupsô member sets).

view

object group

marker set

view set

reference
set

control data

member set

marker

marker set

reference
set

code

marker set

view set

code

reference

set

object

marker set

view set

reference
set

code

view set

code

Replicode - Language Specification V2.0

86/104

2 R-code
Data in both the views and objects are Replicode constructs encoded in r-code. A Replicode
atom is encoded by its counter part in r-code, called an r-atom. An r-atom is 4 bytes long, and
the r-code expressions contained in views and objects are stored in a compact form, that is, in
arrays of 64 bits words.

The counter-parts of Replicode opcodes are called r-opcodes. Operator r-opcodes are indexes
of operators in a table - the Operator Register (see Annex 4).

The preprocessor uses the !class directives to define r-atoms for object and marker classes,

incrementing the r-opcode when parsing each directive, and deducing their respective arity from
the class structures.

r-code is specified as a C++ shared object, (header r_code.h, binary r_code.so) containing the

definitions of the constructions defined in the sections below.

2.1 R-atoms
An r-atom is composed of one byte - the descriptor - followed by three bytes - the data. The
descriptor identifies the semantics of the data, i.e. how to interpret it.

There is one noticeable exception, r-atoms that represent floating point numbers: such r-atoms
are numbers coded in the IEEE754-32 format on 32 bits, right shifted by 1 bit. The significand
part of such a number is thus reduced to 22 bits (not counting the hidden bit). To differentiate r-
atoms from floating point numbers, the convention is that r-atoms not representing floating point

numbers have their most significant bit set to 1.

r-code defines the following r-atoms (data are described as [field-name (size) | é | field-name

(size)], sizes in bits):

Descriptor Value Data
 (hex)

float 32 bits xx the 3 least significant bytes of the IEEE754-32

 representation, the most significant byte being the
 the descriptor itself. Encoding a number proceeds by
 right shifting it by 1 bit and decoding it, by left
 shifting the r-atom by 1 bit.
nil 80 [unused (24)]

Boolean 81 [unused (23) | value (1)]

wildcard (:) 82 [unused (24)]

tail wildcard (: :) 83 [unused (24)]

internal pointer 84 [unused (8) | index (16)]

reference pointer 85 [unused (8) | index (16)]

value pointer 86 [unused (8) | index (16)]

ipgm pointer 87 internal use
input obj. pointer 88 internal use
value array pointer 89 internal use
prod. pointer 8A internal use
output obj. pointer 8B internal use
deleg. in. obj. ptr 8C internal use
assignment pointer 8D internal use
this 90 [unused (24)]

view 91 [unused (24)]

mks 91 [unused (24)]

vws 91 [unused (24)]

node A0 [unused (16) | identifier (8)]

device A1 [node-identifier (8) | class-identifier (8) |

 instance-identifier (8)]
device function A2 [r-opcode (16) | unused (8)]

chain pointer C0 [unused (16) | number-of-elements (8)]

set C1 [unused (8) | number-of-elements (16)]

structured set C2 [r-opcode (16) | arity (8)]

object opcode C3 [r-opcode (16) | arity (8)]

Replicode - Language Specification V2.0

87/104

marker opcode C4 [r-opcode (16) | arity (8)]

operator opcode C5 [unused (8) | r-opcode (8) | arity (8)]

character string C6 [number-of-blocks-of-4-characters (8) |

 number-of-characters (16)]
timestamp C7 [unused (24)]

group C8 [r-opcode (16) | arity (8)]
ipgm C9 [r-opcode (16) | arity (8)]
icpp_pgm CA [r-opcode (16) | arity (8)]
ipgm (no inputs) CB [r-opcode (16) | arity (8)]
ipgm (|pgm) CC [r-opcode (16) | arity (8)]
cst CD [r-opcode (16) | arity (8)]
mdl CE [r-opcode (16) | arity (8)]

Constant values are encoded as follows:

|nb 0x3FFFFFFF
|bl 0x81FFFFFF

true 0x81000001

false 0x81000000

|[] 0xC1000000 (a set with no elements)
|n id 0xA0FFFFFF
|did 0xA1FFFFFF
|fid 0xA2FFFFFF

|st 0xC6000000 (a string with no characters)
| us 0xC7FFFFFF

fore ver 0xC7FFFFF0

r-atoms whose descriptors have the 6
th
 bit set to 1 are atoms indicating structures composed of

several atoms, like expressions lead by operators or by object/marker classes, sets, character
strings, timestamps and also, user-defined object/marker classes. Such atoms are thereafter
called structural atoms.

Descriptor fields named arity contain the number of members for an object or marker class, or
the number of operands for an operator. These numbers are limited to 255 for objects, markers
and set objects, and to 7 for operators.

Structured sets are used to encode structures (think C-style structures) in sets of fixed arity like
for example, view or _in_sec (see Annex 1, section 4.2.2). Semantically, structured sets are

identical to object classes. Structured sets are a convenience for allowing writing structures at
the source code level without having to specify their opcodes (as required when using object
classes). For example, using a structured set for encoding a view allows writing (in the source
code) [ijt sln res grp org] instead of (view ijt sln res grp org) . However, the internal

representation specifies the opcode of the view structure using a r-atom of type structured set.

Internal pointers are indexes to retrieve r-atoms from the same array said internal pointers are
located in. Indexes are absolute values (unsigned 16-bits integers).

Reference pointers are indexes to retrieve addresses of objects from the reference set
(including markers if they have been referenced explicitly). Reference pointers are used to refer
to objects that are not derived from computation (e.g. pattern matching, guards and production).
For example, an explicit reference to stdout is encoded using a reference pointer.

Value pointers are indexes to access the value storage, that is, a structure allocated by the
executive to hold (a) actual template parameters for instantiated objects, (b) objects that
matched the inputs of a program and, (c) intermediate values resulting from the evaluation of
expressions in the code of programs. A value storage is allocated for each overlay and contains
the same structure as the program the overlay is an execution of. Value storages are instances
of the class r_code::ReductionInstance (see Annex 4).

Chain pointers are structures of r-atoms for accessing named members of structures. After the
leading r-atom (identifying the chain pointer type), the first r-atom is a pointer to an object (this,
a reference pointer, or a value pointer), followed by an internal pointer to a member of said
object (see section 1.2 in this Annex). In case this member has a deep structure (i.e. is a
structure itself), it can be followed by other pointers to members.

The r-atoms this, mks, vws, and view indicate to the executive how to retrieve objects from

Replicode - Language Specification V2.0

88/104

memory, respectively, the instantiated program currently being executed (this), the marker set
(mks), the view set (vws), and the view of an object in the group where the reduction is
performed.

Timestamp r-atoms are followed by two 32 bits words containing the time (in microseconds)
since 01/01/1970. These words shall not be interpreted as r-atoms but as raw data.

r-atoms are instances of the following class:

// file r_code.h

using namespace core;

namespace r_code{

// Opcodes on 12 bits.

// Indices on 12 bits.

// Element count on 8 bits.

// To define bigger constructs (e.g. large matrices), define hooks to RAM (and derive classes

from Object).

class dll_export Atom{

private: // trace utilities.

 static uint8 Members_to_go;

 static uint8 Timestamp_data;

 static uint8 String_data;

 static uint8 Char_count;

 void write_indents() const;

public:

 typedef enum{

 NIL=0x80,

 BOOLEAN_=0x81,

 WILDCARD=0x82,

 T_WILDCARD=0x83,

 I_PTR=0x84, // internal pointer.

 R_PTR=0x85, // reference pointer.

 VL_PTR=0x86, // value pointer.

 IPGM_PTR=0x87, // r_exec internal: index of data of a tpl arg held by an

ipgm.

 IN_OBJ_PTR=0x88, // r_exec internal: index of data held by an input object.

 VALUE_PTR=0x89, // r_exec internal: index of data held by the overlay 's

value array.

 PROD_PTR=0x8A, // r_exec internal: index of data held by the overlay's

production array.

 OUT_OBJ_PTR=0x8B, // r_exec internal: index of data held by a newly produced

object.

 D_IN_OBJ_PTR=0x8C, // r_exec internal: index of data held b y an object referenced

by an input object.

 ASSIGN_PTR=0x8D, // r_exec internal: index of a hlp variable and to be assigned

index of an expression that produces the value.

 THIS=0x90, // this pointer.

 VIEW=0x91,

 MKS=0x92,

 VWS=0x93,

 NODE=0xA0,

 DEVICE=0xA1,

 DEVICE_FUNCTION=0xA2,

 C_PTR =0xC0, // chain pointer.

 SET=0xC1,

 S_SET=0xC2, // structured set.

 OBJECT=0xC3,

 MARKER=0xC4,

 OPERATOR=0xC5,

 STRING=0xC6,

Replicode - Language Specification V2.0

89/104

 TIMESTAMP=0xC7,

 GROUP=0xC8,

 INSTANTIATED_PROGRAM=0xC9,

 INSTANTIATED_CPP_PROGRAM=0xCA,

 INSTANTIATED_INPUT_LESS_PROGRAM=0xCB,

 INSTANTIATED_ANTI_PROGRAM=0xCC,

 COMPOSITE_STATE=0xCD,

 MODEL=0xCE

 }Type;

 // encoders

 static Atom Float(float32 f); // IEEE 754 32 bits

encoding; shifted by 1 to the right (loss of precison).

 static Atom PlusInfinity();

 static Atom MinusInfinity();

 static Atom UndefinedFloat();

 static Atom Nil();

 static Atom Boolean(bool value);

 static Atom UndefinedBoolean();

 static Atom Wildcard(uint16 opcode=0x00);

 static Atom TailWildcard ();

 static Atom IPointer(uint16 index);

 static Atom RPointer(uint16 index);

 static Atom VLPointer(uint16 index,uint16

 cast_opcode=0x0FFF);

 static Atom IPGMPointer(uint16 index);

 static Atom InObjPointer(uint8 inputIndex,uint16

index); // inputIn dex: index of the input view; index: index of data in

the object's code.

 static Atom DInObjPointer(uint8 relativeIndex,uint16

index); // relativeIndex: index of an in - obj - ptr in the program's (patched) code;

index: index of data in the referenced object code.

 static Atom OutObjPointer(uint16 index);

 static Atom ValuePointer(uint16 index);

 static Atom ProductionPointer(uint16 index);

 static Atom AssignmentPointer(uint8 variable_index,uint16

index);

 static Atom This();

 static Atom View();

 stat ic Atom Mks();

 static Atom Vws();

 static Atom Node(uint8 nodeID);

 static Atom UndefinedNode();

 static Atom Device(uint8 nodeID,uint8 classID,uint8 devID);

 static Atom UndefinedDevice();

 static Atom DeviceFunction(uint16 opcode);

 static Atom UndefinedDeviceFunction();

 static Atom CPointer(uint8 elementCount);

 static Atom SSet(uint16 opcode,uint8 elementCount);

 static Atom Set(uint8 elementCount);

 static Atom Object(uint16 opcode,uint8 arity);

 static Atom Marker(uint16 opcode,uint8 ari ty);

 static Atom Operator(uint16 opcode,uint8 arity);

 static Atom String(uint8 characterCount);

 static Atom UndefinedString();

 static Atom Timestamp();

 static Atom UndefinedTimestamp();

 static Atom InstantiatedProgram(uint16 opcode,uint8 arity) ;

 static Atom Group(uint16 opcode,uint8 arity);

 static Atom InstantiatedCPPProgram(uint16 opcode,uint8 arity);

 static Atom InstantiatedAntiProgram(uint16 opcode,uint8 arity);

 static Atom InstantiatedInputLessProgram(uint16 opcode,uint8

arity);

Replicode - Language Specification V2.0

90/104

 st atic Atom CompositeState(uint16 opcode,uint8 arity);

 static Atom Model(uint16 opcode,uint8 arity);

 static Atom RawPointer(void *pointer);

 Atom(uint32 a=0xFFFFFFFF);

 ~Atom();

 Atom &operator =(const Atom& a);

 bool operator ==(const Atom& a) const;

 bool operator !=(const Atom& a) const;

 bool operator !() const;

 operator size_t () const;

 uint32 atom;

 // decoders

 bool isUndefined() const;

 uint8 getDescriptor() const;

 bool isStructural() const;

 bool isFloat() const;

 bool readsAsNil() const; // returns true for ll undefined values.

 float32 asFloat() const;

 bool asBoolean() const;

 uint16 asIndex() const; // applicable to internal, view, reference,

 // and value pointers.

 uint8 asInputIndex() const; // applicable to IN_OBJ _PTR.

 uint8 asRelativeIndex() const; // applicable to D_IN_OBJ_PTR.

 uint16 asOpcode() const;

 uint8 asCastOpcode() const; // applicable to VL_PTR.

 uint8 getAtomCount() const; // arity of operators and

 // objects/markers/structured sets,

 // number of atoms in pointers chains,

 // number of blocks of characters in

 // strings.

 uint8 getNodeID() const; // applicable to nodes and devices.

 uint8 getClassID() const; // applicable to devices.

 uint8 getDeviceID() const; // applicable to devices.

 uint8 asAssignmentIndex() const;

 template<class C> C *asRawPointer() const{ return (C *)atom; }

 void trace() const;

 static void Trace(Atom *base,uint16 count);

 };

}

2.2 Encoding of Expressions
Encoding of Replicode expressions in r-code is performed according to the following rules:

I. an atom is encoded as its corresponding r-atom, except tail wildcards, atoms
leading expressions, references to objects, references to members and
timestamps;

II. a tail wildcard is encoded as an r-atom for the tail wildcard followed by r-atoms
representing regular wildcards (:): this is meant to preserve the arity of the

expression containing the tail wildcard. The number of inserted regular
wildcards is arity-of-the-expression - position-of-the-tail-wildcard-in-the-

expression;

III. an expression is encoded as the sequence of the structural r-atom
corresponding to the opcode leading the expression, followed by the r-atoms
corresponding to the components of the structure;

IV. when components of structures are structures themselves (i.e. sub-structures),
they are encoded as internal pointers to a location (in the same array)

Replicode - Language Specification V2.0

91/104

containing the r-atoms encoding the sub-structure;

V. references to variables are encoded as value pointers;

VI. explicit references to objects (including markers that are explicitly referenced)
are encoded as reference pointers;

VII. a reference to the view of an object is encoded as an internal pointer to the
view. The view itself is encoded as the r-atom view, i.e. a place-holder where

the executive will insert the correct view, depending on which group the
reduction takes place;

VIII. references to the marker set and to the view set are encoded as internal
pointers to, respectively, the r-atom mks and vws - this is similar to the
encoding of the view (rule VII above).

IX. explicit references to object members are encoded as chain pointers, i.e.
structures of r-atoms. The first element of a chain pointer is the r-atom for the
chain, followed by a pointer to an object (this, value or reference pointer), and
followed in turn by internal pointers to the members of the object.

Indexing members in structures assumes the following rule: the index 0 is the location in
the array of the opcode leading the structure ï the index of the first member is 1. The
length of chained references to members is limited to 255.

Explicit member access is also applicable to sets and structured sets: the index of an
element of a set is the offset or the r-atom of the element counted from the first one, 0
being the index of the r-atom indicating a set.

The allocation of r-atoms in arrays is to be performed depth first. The following algorithm
(in pseudo code) demonstrates how to perform such allocations while encoding
expressions from source code into r-code ï for the sake of clarity, the algorithm is greatly
simplified and does not implement all the rules given above:

input_stream: stream containing source code

writing index: the position where to write r - atoms in an array

in_ a_structure : a flag indicating that the parsed code is an element of either an

expression or of a set.

encode(input_stream,index,writing_index ,in_ a_structure)

 atom=input_stream.getNextAtom()

 if atom is structural

 if in_a_structure

 write internal pointer at writing_index

 encode(input_stream,writing_index+atom.arity,false)

 else

 write atom at index

 for i=1 to atom.arity

 encode(input_stream,writing_index+1,true)

 else

 write atom at index

 encode(input_stream, writing_ index+1, in_a_structure)

For example:

If input stream s contains the expression:

(opcode1 m1 (opcode2 m2 m3) m4 m5)

where m4 is a set of 5 expressions and m1, m2, m3 and m5 are Replicode atoms (i.e.

neither expressions nor sets), then encode(s,0,false) writes:

Index Content

0 opcode1

1 m1

2 inte rnal pointer to the sub - expression lead by opcode2 (5)

3 internal pointer to m4 (8)

4 m5

5 opcode2

6 m2

Replicode - Language Specification V2.0

92/104

7 m3

8 r - atom for set (size: 5)

9 internal pointer to the first element of the set (14)

...

13 internal pointer to the last element of the set

14 opcode leading the con tent of the first element of the set

15 content of the first element of the set

...

See section 1.4 for more examples.

2.3 Example s
This section describes the encoding of views and objects for programs (pgm) and process

objects (pro), assuming the declarations above.

pgm

The code segment of an object encoding a program contains the following r-atoms:

Index Content

0 r - atom for pgm

1 internal pointer to tpl (12)

2 internal pointer to inputs (13+n)

3 internal pointer to prods (23+n+m+p+q)

4 internal poi nter to tsc (25+n+m+p+q+r)

5 r - atom for csm

6 r - atom for sig

7 r - atom for nfr

8 r - atom for view

9 r - atom for mks

10 r - atom for vws

11 r - atom for psln_thr

12 r - atom for the tpl set (size: n)

13 internal pointer to first pattern in tpl

...

12+n internal pointer to last pattern in tpl

13+n r - atom for the input set (size: 3)

14+n internal pointer to input patterns

15+n internal pointer to timings

16+n internal pointer to guards

17+n r - atom for the pattern set (size: m)

18+n internal pointer to first pattern in inputs

...

18+n+m internal pointer to last pattern in inputs

19+n+m r - atom for the timings set (size: p)

20+n+m internal pointer to the first expression in timings

...

20+n+m+p internal pointer to the last expression in timings

21+n+m+p r - atom for the guards set (size: q)

22+n+m+p internal pointer to the first expression in guards

...

22+n+m+p+q internal pointer to the last expression in guards

23+n+m+p+q r - atom for the prods set (size: r)

24+n+m+p+q internal pointer to the first command

...

24+n+m+p+q+r internal pointer to the last command

25+n+m+p+q+r r - atom for the tsc timestamp

26+n+m+p+q+r most significant 32 bits of the timestamp

27+n+m+p+q+r least significant 32 bits of the timestamp

... tpl patterns

... input patterns

.. . timings

Replicode - Language Specification V2.0

93/104

... guards

... productions

Notice that the programôs view, marker set and view set are not encoded in the code segment:
they are encoded as place holders, to be valuated dynamically by the executive.

A segment of r-code encoding the local data for a program contains the following r-atoms:

Index Content

0 r - atom for view

1 r - atom for ijt

2 r - atom for sln

3 r - atom for res

4 reference pointer to a group

5 reference pointer to a group, or r - atom for node

6 r - atom for act

The r-atom for the view refers to the Replicode class, i.e. is encoded as 0xC3xxxxxx, not as the

view r-atom (0x9100000) .

The reference pointers are indexes in an array holding the actual addresses of the groups.

These pointers are valuated by the executive.

Replicode - Language Specification V2.0

94/104

3 Compiler
The compiler is composed of two C++ functions ï compile and decompil e -, all defined in a single

shared object named r_comp.so .

These functions take as input/output arguments, snapshots of memory called images.

N.B.: the compiler is meant to be used in interactive mode, i.e. to encode in a scripting
environment, and to decode for debugging purposes. Its performance is expected to be
adequate to these uses.

3.1 Images
Images contain objects in r-code form, serialized from memory. Such images are mapped by
the executive into memory to load the application. Images can be written to and read from disk,
and can also be transmitted by the messaging interface.

An image contains four structures, arranged in a contiguous memory area ï in the specified
order:

Á definition segment: an array containing class definitions - member names,
offsets and types.

Á object map: an array containing the indexes of objects in the code segment.

Á code segment: an array holding the code of objects. Each object is stored as an
array of r-atoms, followed by an array of pointers to other objects (the reference
set), and last, by an array of views. Each view has its own code array and its
own reference set.

The format for encoding the definition segment is private to the compiler and is not part of this
specification.

Replicode - Language Specification V2.0

95/104

Figure 2 ï Structure of an Image

Here is represented the structure if an image resulting from the compilation of a
source code defining among other things, a class, two programs and three initial
injections. Indexes are represented by dashed arrows.

The code for P0 does not reference any object: it has no reference set. The code

of P1 references P0, and thus, its reference set contains one index (vertical

pattern) to the relocation segment corresponding to P0.

Each entry in the relocation segment contains a list of the indexes where the
executive shall substitute indexes (to the relocation segment) for actual
addresses.

r-code defines the prototype of images as follows:

// file r_code.h

using namespace std;

namespace r_code{

...

!def (a_class ...)

...

P0:(pgm ...)

P1:(pgm ... P0 ...)

...

(inj [iP0:(ins P0 [...]) [iP0 - view- data]]); inj0

(inj [iP1:(ins P1 [...]) [iP1 - view- data]]); inj1

(inj [obj:(... iP1 ...) [obj - view- data]]); inj2

...

class

segment

code

segment

relocation

segment

definiton
for

a_class

code
for P0

code
for P1

reference
set for P1

P0
P1
i P0
i P1
obj

reference
set for P2

code
for P2

Replicode - Language Specification V2.0

96/104

class dll_export Image{

friend r_comp::Image;

private:

 uint32 def_size;

 uint32 map_size;

 uint32 code_size;

 word32 *data; // [def segment| object map| code segment]

 word32 *getDefSegment() const;

 uint32 getDefSegmentSize() const;

public:

 Image();

 ~Image();

 uint32 getSize() const; // size of data in word32

 uint32 getObjectCount() const;

 word32 *getObject(uint32 i) const; // points to the code size of

 // the object; the first at om

 // is at getObject()+2

 word32 *getCodeSegment() const ; // equals getObject(0)

 uint32 getCodeSegmentSize() const;

 void read(ifstream &stream);

 void write(ofstream &stream);

 void tra ce() const;

};

}

The class segment is not part of the image specification: the compiler is free to
use any subclass of Image appending the class segment to the existing structure.

The only requirement is to keep the definition segment aligned on 4 bytes.

Reference pointers are included in the code segment.

An image contains the following:

- sizes of what follows

- def segment: list of class, operators and function definitions, and object names

- object map: list of indexes (4 bytes) of objects in the code segment

- code segment: list of objects

 - object:

 - size of the code (number of atoms)

 - size of the reference set (number of pointers)

 - size of the marker set (number of pointers)

 - size of the view set (number of views)

 - code: indexes in internal pointers are relative to the beginning of the
 object, indexes in reference pointers are relative to the beginning of the
 reference set

 - reference set:

 - number of pointers

 - pointers to the relocation segment, i.e. indexes of relocation
 entries

 - marker set:

 - number of pointers

 - pointers to the relocation segment, i.e. indexes of
 relocation entries

 - view set: list of views

 - view:

 - size of the code (number of atoms)

 - size of the reference set (number of
 pointers)

 - list of atoms

Replicode - Language Specification V2.0

97/104

 - reference set:

 - pointers to the relocation
 segment, i.e. indexes of relocation
 entries

RAM layout of Image::data:

data[0]: first word32 of def segment
... ...
data[def_size-1]: last word32 of def segment
data[def_size]: index of first object in data
... ...
data[def_size+map_size-1]: index of last object in data
data[def_size+map_size]: first word32 of code segment
... ...
data[def_size+map_size+code_size-1]: last word32 of code segment

An image defines everything needed to instantiate objects and groups in given node. In this
version of the specification, as many images as there are nodes in a system shall be generated
by the compiler (i.e. one shall compile as many source files as there are nodes).

3.2 compile
The compile function compiles code in the Replicode form into the r-code form. The function has

two overloads.

Signatures

void compile(ifstream &stream,

 Image *&image,

 char *&error_msg);

void compile (i string stream &stream,

 Image *&image,

 char *&error_msg);

Inputs

stream: an input character stream. File and string streams are valid inputs.

Outputs

 image: an image in memory containing r-code objects.

 error_msg: a character string containing the first syntax error encountered (NULL

otherwise).

The stream is parsed in one single pass.

The function is supposed to output an error message at the first syntax error it encounters, and
stop compiling at that point in the stream. In that case, no image is produced.

Operator return types and class member types are used by the function to enforce minimal
static type checking.

3.3 deco mpile
The decompile function decompiles code in the r-code form into the Replicode form.

Signature

void decompile(Image *&image ,

 ostring stream stream);

Inputs

image: an image in memory containing r-code objects.

Outputs

 stream: an output character stream.

In the source code obtained from decompile, r-atoms shall be replaced by their corresponding

Replicode - Language Specification V2.0

98/104

readable forms (if any), as defined in the source code using preprocessor directives:

Á the member indexes shall be replaced by the corresponding member names, as
defined by the !class directives;

Á the object, marker and device functions opcodes shall be replaced by their
corresponding definitions in the !class , ! dev and !dfn directives;

Á commands in productions shall be replaced - when possible - using the aliases defined
for the functions of the executive;

Á literals representing constants in std.replicode shall replace their counterparts in r-
code;

Á references to the groups root, stdin and stdout and references to the entity self shall be

replaced by the symbols root , stdin , stdout and self .

In addition, decode shall also convert value pointers to references to variables and labels, and
insert these variables and labels in the code. Names for these shall be composed of the
underscore character, followed by a capital letter and at least one digit.

4 Communication With External
Module s

External modules are user-defined C++ code that might need to communicate with the
Replicode application. To do so, they would send or receive messages carrying Replicode
objects, encoded in r-code. The messaging infrastructure is not part of the specification.

External modules have to convert r-code into C++ constructs (when receiving messages from
the application) and vice versa (when notifying the application, i.e. sending messages).

Basically, external modules shall use the r-view and r-object classes as the carriers of their I/O,
that is, modules shall encode/decode information into/from arrays of r-atoms.

r-code constructs are declared in the r_code.h header file, the definitions being provided as a

shared object, r_code. so. The latter is to be loaded at runtime by the shared objects

implementing the external modules.

The executive is specified independently of the messaging interface. The executive is meant to
be wrapped into a module that complies with the messaging interface. This wrapper module is
responsible for:

Á having the executive load images when received from the network: it shall
implement a function like:

void batch_receive () {

 <for each group in the image>

 Object* o = Object::create(<arguments>)

 Mem::receive(o, <other argumen ts>)

 Group* g = o - >asGroup()

 <for each object in the image>

 Object* o = Object::create(<arguments>)

 Mem::receive(o, <other arguments>)

}

Á notifying the rMem of incoming messages carrying r-code: this translates into a call to
Mem::receive();

Á sending objects to remote nodes upon the execution of ejection commands by the
rMem.

Á controlling the rMem, upon reception of commands start, stop, pause and resume.

Replicode - Language Specification V2.0

99/104

5 Dependencies
This section summarizes the dependencies between the various components defining an
application.

Figure 3 - Dependencies

Dependencies are indicated by dashed lines: they correspond to the loading of
the pointed objects at runtime.

The executive is wrapped into a module that complies with the messaging
infrastructure (see Annex 2).

usr.operators.so is shared object that implements user-defined operators (see

section 2.1. of the Annex 4 for details).

r_code.so

r_comp.so r_exec.s o

Messaging

Infrastructure

External Module

usr.operators.so

Executive Wrapper Development

Environment

Messaging Library

Replicode - Language Specification V2.0

100/104

Annex 4 ð Replicode
Extension API

1 Overview
Replicode allows programmers extending the language with:

Á custom operators,

Á custom object classes,

Á custom marker classes.

In addition, programmers also have to define and implement:

Á custom devices,

Á custom device functions.

Custom object or marker classes do not require any API, as they are to be declared as
preprocessor directives (see section 3.1).

Devices are external modules and their specification has to comply with the requirements of the
messaging infrastructure. Thus, Replicode does not include an API to define these devices (see
section 3.2).

For the same reason, the implementation of device functions does not depend on Replicode
(see section 3.3).

To summarize, the purpose of the Replicode Extension API is to allow programmers extending
Replicode with custom operators.

2 Specification
Operators have to be registered in a table mapping the opcode of an operator to the address of
the C++ function that implements it. The table is called the Operator Register and is defined as
follows:

// file r_code.h

using namespace std;

namespace r_code{

class dll_expor t Expression{

friend class ReductionInstance;

protected:

 ReductionInstance *instance;

 int 32 index;

 bool isValue;

public:

 RExpression(ReductionInstance *instance_,

 int 32 index_,

 bool isValue _) ;

 Atom& head() const;

 Expression child(int index) const;

 int64 decodeTimestamp() const;

 void setValueAddressing(bool i sValue_);

 bool getValueAddressing() const :

 int 32 getIndex() const ;

 Expression dereference() const;

 Expression co py() const;

 Expression copy(ReductionInstance* dest) const;

 Atom iptr() const;

 Atom vptr() const;

Replicode - Language Specification V2.0

101/104

};

class dll_export ExecutionContext:

public Expression{

private:

 vector< Atom> resultSet;

public:

 ExecutionContext(RExpression& e);

 Expression evaluateOperand(int index);

 Expression evaluate();

 ExecutionContext xchild(int index) const;

 void setResult(Atom result);

 void setResultTimestamp(int64 timestamp);

 void beginResultSet();

 void appendResultSetElement(Atom element);

 void endResultSet();

 void undefinedResult();

};

struct dll_export Group{

 virtual void receiv e(ReductionInstance *reduction)= 0;

 virtual Expression copyContent(ReductionInstance& dest) const=0;

};

class dll_export Object{

public:

 static Object* create(

 vector< Atom> atoms,

 vector<const Object*> references

);

 virtual void retain()= 0;

 virtual void release() =0;

 virtual Expression copy(ReductionInstance& dest) const =0;

 virtual Expression copyMarkerSet(

 ReductionInstance& dest) const =0;

 virtual Expression copyViewSet(

 ReductionInstance& dest) const=0;

 virtual Expression copyVisibleView(

 ReductionInstance& dest,

 const RGroup* group) const =0;

 virtual Expression copyLocalView(

 ReductionInstance& dest,

 const RGroup* group) const =0;

 virtual Object* getReference(int index) const =0;

 virtual const Group* asGroup() const=0;

};

class dll_export ReductionInstance {

friend class Expression;

friend class ExecutionContext;

private:

 struct CopiedObject {

 Object *object;

 int 32 position;

 };

 int 32 referenceCount;

 vector< Atom> input;

 vector< Atom> value;

 vector<CopiedObject> references;

 size_t hash_value;

Replicode - Language Specification V2.0

102/104

public:

 ReductionInstance();

 void retain();

 void release();

 struct ptr_hash {

 size_t operator()(const ReductionInstance * ri) const;

 };

 ReductionInstance* reduce(Object * input);

 ReductionInstance* reduce(vector<ReductionInstance*> inputs);

 void merge(Expression location, ReductionInstance* ri);

};

typedef void (*Operator)(ExecutionContext &context);

class OperatorRegister {

private:

 static OperatorRegister Sin gleton;

 void * operators [256];

 OperatorRegister();

 ~OperatorRegister();

public:

 static OperatorRegister &Get();

 Operator &operator [](uint16 r_opcode);

};

}

N.B.: r_code.h declares the functions implementing the built-in operators. The constructor of

OperatorRegister initializes the register with the addresses of said functions.

The r-opcode of custom operators shall be greater than or equal to 64, the first 64 being
reserved for built-in operators. There can be defined up to 256 operators in total, i.e. up to 192
custom operators.

All operators are required to fail gracefully when passed unsuitable arguments.

User-defined operator opcodes are to be specified in the file usr.operators .replicode . The

implementation of user-defined operators is to be provided in a shared object called
usr.operators.so . Said shared object shall expose a function having the following prototype:

extern "C"{

 uint32 Load();

}

This function is to be called by the executive upon loading the object. Load is supposed to:

- first, perform initialization tasks, shall the operators need some,

- then, register the operators in the OperatorRegister.

OperatorRegister is defined in the shared object r_core. so.

Here is given a sample implementation for the operator add ï in this code, the admissible inputs

are restricted to floats and timestamps:

void operator_add(ExecutionContext & context){

 Expression lhs(context.evaluateOperand(1));

 Expression rhs(context.evaluateOperand(2));

 if(lhs.head().isFloat()) {

 if (rhs.he ad().isFloat()){

 context.setResult(

 RAtom::Float(

 rhs.head().asFloat() +lhs.head().asFloat()

Replicode - Language Specification V2.0

103/104

)

);

 return;

 } else if(rhs.head().getDescriptor() ==Atom::TIMESTAMP){

 context.setResultTimestamp(

 int(lhs.head().asFloat() *1e6)+rhs.decodeTimestamp()

);

 return;

 }

 } else if (lhs.head().getDes criptor()== Atom::TIMESTAMP){

 if(rhs.head(). isFloat()) {

 context.setResultTimes tamp(

 lhs.decodeTimestamp()+int(rhs.head().asFloat() *1e6)

);

 return;

 }

 }

 context.setResult(Atom::Nil());

}

Replicode - Language Specification V2.0

104/104

3 Other Extensions

3.1 Object and Marker Classes
Object and marker classes in Replicode are mapped to instances of RObject : no particular C++

class is required to support user-defined object classes.

The definitions of the r-atoms that correspond to user-defined classes (opcodes) are to be found
in the source code as preprocessor !class directives (file usr. object s.replicode).

3.2 Devices
Devices are external modules and as such, depend on the specification of the messaging
infrastructure.

In r-code, devices are r-atoms whose structure is:

Descriptor Data

A2 [node-identifier(8) | class-identifier(8) | instance-identifier(8)]

Devices shall be defined in the source code, using preprocessor !def directives (file
usr.devices .replicode). The field called node-identifier is to be left to 0x0, since it is to be

valuated dynamically by the executive, depending on where an instance of the module will be
instantiated in the cluster. In contrast, the fields class-identifier and instance-identifier must be

assigned a correct value in the macro definition, in accordance with the messaging
infrastructure.

3.3 Device Functions
Device functions are identifiers found in command objects (cmd) and used by modules to identify

the operation they shall perform.

Device functions are defined as r-atoms whose structure is:

Descriptor Data

A3 [unused(8) | r-opcode(8)]

Device functions shall be defined in the source code, using preprocessor !def directives (file

usr.device.func tions .replicode).

